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The ubiquitous use of smartphones and the emergence of new technologies such as 

ridesourcing and connected/automated vehicles provide new opportunities for mobile sensors in 

traffic monitoring and data collection. To make GPS based smartphones an effective and practical 

source of transportation data, one needs to address the multifaceted challenges related to mobile 

sensing. Since the mobile sensing technology requires individual sensors (often from end-users) 

sending location information periodically to the data collector (e.g., a server), one of such 

challenges is the storage and data transmission cost incurred to individual sensors/users, as well as 

the battery life of mobile sensors.  
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This research aims to balance the data transmission cost and the needs to collect detailed 

mobile sensing data by developing a method to resample the smartphone-based GPS data at the 

user side. The work introduces the concept of Vehicle Flow State (VFS) to explain the implicit 

nature of probe vehicle’s motion. Then the work proposes a methodology which first estimates the 

vehicle flow state (VFS) of the sensor/vehicle from its trajectory data and then uses the estimated 

VFS to adjust the sampling rate of the trajectory accordingly.  

The primary contributions of this work are as follows. First, this work develops the concept 

of vehicle flow state (VFS) and developed an HMM-based method to identify the VFS of an 

individual vehicle. Second, two self-adaptive sampling strategies for vehicle trajectory data are 

presented based on the identified VFS, which reduces the overall data size and transmission cost. 

Finally, this work presents comprehensive testing and validation of the proposed methods with 

real-world trajectory data. The methods and algorithms provided in this work will be of significant 

value to the server-side and the user/client side of a smartphone-based vehicle trajectory data 

collection system. The reduced data using proposed methods show a promising result in traffic 

modeling applications (such as queue length estimation) and the end user’s privacy protection. 
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 INTRODUCTION 

 BACKGROUND AND MOTIVATION 

 The rapid advent of GPS-enabled mobile devices especially smartphones has created a new 

stream of location data. Approximately 77% of global mobile device connections in 2025 will be 

smartphones, a number that translates into 7 billion smartphone users worldwide (Statista, 2018). 

By 2025, there will be 116 million connected cars in the U.S., and according to one estimate by 

Hitachi (Quartz, 2015), each of those connected cars will upload 25 gigabytes of data to the cloud 

per hour. That is 219 terabytes each year, meaning roughly 25 billion terabytes of total connected 

car data each year. The rise of smartphones and the emergence of new technologies such as 

ridesourcing and connected/automated vehicles have led to a wide deployment of mobile sensors 

in transportation. The ability to provide extensive spatial and temporal coverage has made those 

mobile sensors an important source of traffic data (Wan et al., 2016). Among the first real-world 

applications of crowdsourced cell phone location data for traffic information, Google Maps began 

offering real-time traffic information in early 2007 (Crackberry, 2007). The availability and use of 

commercial probe vehicle data in traffic information systems and analysis increased in the 

following years. In 2013 HERE North America (formerly NAVTEQ/Nokia) began providing 

probe vehicle data for the entire national highway system under contract with the Federal Highway 

Administration (FHWA). This dataset, titled the National Performance Management Research 

Data Set (NPMRDS), was obtained through mobile phones, dedicated GPS, and embedded fleet 

systems and provided by the FHWA free of charge to metropolitan planning organizations (MPOs) 

and departments of transportation (DOTs) throughout the USA for performance monitoring and 

planning activities (FHWA Office of Operations 2013).  Today, GPS based location data is widely 

used for almost all types of applications in transportation from traffic state estimation, performance 
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evaluation, to travel/mobility patterns and travel demand analysis, and decision making (Ban and 

Gruteser, 2012; Zheng, 2015).  

To make mobile sensors especially GPS-equipped smartphones an effective and practical 

solution to transportation applications, one needs to address the multifaceted challenges related to 

mobile sensing. Since the mobile sensing technology usually requires individual sensors (often 

from end-users) sending location information periodically to the data collector (e.g., a server or 

cloud), one of such challenges is the storage and data transmission cost incurred to individual 

sensors/users (Meratnia and Rolf, 2004), as well as the battery life of mobile sensors (Wang et al., 

2009). Figure 2.1 illustrates the schematics of GPS based location data collection process and 

related costs on client and server sides. The cost collecting such “crowdsourcing” location data 

depends on the sampling rate, i.e., how many data records to collect every second from individual 

sensors. Using GPS-enabled mobile sensors as an example, those sensors have the potential to 

collect one or multiple data records every second. However, if relatively high sampling rate (e.g., 

every second) is used, the large amount of data generated on the sensor side can incur expensive 

data transmission cost (Meratnia and Rolf, 2004). Over time, it may lead to a series of difficulties 

in storing, transmitting, and data analysis, as the size of trajectory data increases and the scale of 

data grows huge and complex. First of all, the sheer volumes of data can quickly overwhelm 

available data storage on the device (sensor) side, which will make it difficult to store the data. For 

instance, if data is collected at 2-second intervals, 1 GB of storage capacity is required to store just 

over 800 objects for a single day. Therefore, the storage of data will result in an enormous cost. 

The cost of transmitting a large amount of trajectory data, which may be expensive and 

problematic, is the second major problem. For example, tracking a fleet of 4,000 vehicles for a 

single day would incur a cost of $5,000 to $7,000, or approximately $1,800,000 to $2,500,000 
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annually, if data are collected every second (Muckell et al., 2014). This is an important issue even 

for nowadays when the concept and methods of “big data” have been proposed and used in many 

areas. As shown in Figure 1.1, although the data collectors (i.e.,  the server or the cloud side) 

usually have very powerful tools and systems that can deal with datasets with almost any size, 

individual users (sensors) typically do not have the interest to spend considerable resources (for 

storage and data transmission) related to mobile data collection.  

 

Figure 1.1. The schematics of GPS based location data collection process and related costs on 

server and client side 

 

To balance the data transmission cost and the needs to collect detailed mobile sensing data, 

the current practice is to use relatively low sampling rate: e.g., 30 seconds or a few minutes or even 

longer for fleet vehicle monitoring (Chen et al., 2017) or a few seconds for ridesourcing vehicle 
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monitoring (e.g., the 3-second sampling rate is used by Didi, a ridesourcing company based in 

Beijing, China; see http://www.didichuxing.com/en/). Under a lower sampling rate, however, the 

collected data might not fully capture important vehicle moving conditions, resulting in lower 

accuracy or information loss. Therefore, there is a need to design adaptive sampling mechanisms 

for mobile data collection, which can achieve storage and data transmission cost savings while 

maintaining the accuracy level required for traffic/transportation applications. Note that battery 

use is one of the important concerns when collecting mobile data, which has also been studied in 

the past, e.g., by periodically turning off GPS sensors (Paek et al. 2010).  

This dissertation research focuses on finding a better way to compress GPS based vehicle 

trajectory data from mobile sensors to reduce the data size. A trajectory is a path that a moving 

object follows through space as a function of time, which is one of the most important types of 

data one can collect via mobile sensors. Data compression aims to reduce the size of data to cut 

down the memory space and improve the efficiency of transmission, storage, and processing 

without severely losing critical information. When applied to trajectory data, data compression is 

also called trajectory compression. Figure 1.2 is a schematic diagram of trajectory compression, 

where the original trajectory is represented by black lines and the compressed trajectory consists 

of red lines (namely, 𝑆1, 𝑆2  ,𝑆3 , and 𝑆4). There are 9 points in the original trajectory, but only 5 

points are retained to approximately represent the original trajectory after compressing with a 

compression ratio close to 50%. Thus, it can be seen that trajectory compressions play an important 

role in the storage and analysis of data. Trajectory compression tends to cause a certain loss of 

information, and therefore, various trajectory algorithms existing in literature balance the tradeoff 

between accuracy and data reduction. 

http://www.didichuxing.com/en/
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Figure 1.2. A schematic of the trajectory compression 

 

In the literature of mobile data collection and management, most existing data 

reduction/compression techniques rely on the geometric properties of trajectory data (Keogh et al., 

2001; Meratnia and Rolf, 2004; Lovrić et al. 2014). The existing trajectory compression algorithms 

can be categorized as either “batch” algorithms or “online” algorithms based on whether they can 

run in real-time or not. Batch algorithms compress a trajectory (i.e., resample the trajectory at a 

lower rate) after the original trajectory has been fully collected at a high sampling frequency (e.g., 

one data point every second) (Lee and Krumm, 2011; Lawson et al., 2011). Online trajectory 

compression algorithms work in real-time as the vehicle travels and the data are collected, such as 

the sliding window algorithm (Shatkay, 1995; Park et al., 1999). An important limitation of 

existing trajectory compression algorithms is that they are purely trajectory-geometry (shape) 

based, as they often use the perpendicular distance of a data point to a proposed generalized line 

as the condition to discard or retain the data point. This may result in inadequate data records in 

some cases as discussed in Zheng (2015) 
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In transportation, Lim et al. (2017) proposed a sampling scheme to collect real-time locations 

and speeds from in-vehicle GPS-based devices over a road network. The target scenario is in the 

connected vehicles (CV) environment when data from most vehicles may be collected for 

estimating the traffic state of a road network. The sampling method can be considered as a 

centralized scheme where data from most vehicles can be collected. In this case, the data collector 

(server) designs the entire sampling method with the objective to minimize the transmission cost 

overall vehicles while satisfying the accuracy in estimating average link speeds and the timeliness 

of the obtained traffic data. The sampling rates are then sent from the center to individual vehicles 

to sample vehicle-specific data. Such a centralized scheme may not be easily applicable to other 

applications, such as mobile app-based navigation systems (e.g., google map) that are currently 

widely deployed. For such systems, users/vehicles are more ad-hoc and dynamic and the systems 

only have access to data of a small fraction of the vehicles. For those systems, a light-weighted, 

decentralized sampling method is preferable to the centralized scheme.  

 RESEARCH OBJECTIVES 

This dissertation aims to propose a decentralized method of collecting/sampling vehicle 

trajectories based on the state of individual vehicles. The goal of this research is, instead of just 

using the geometric properties of the trajectory, to focus on the intrinsic features of vehicle 

trajectories over time in the form of vehicle flow state (VFS) that can better reveal the underlying 

vehicle moving conditions. Such ‘traffic knowledge’ revealed by vehicle trajectories can be then 

used in vehicle trajectory compression to not only reduce the data size but also to make sure the 

reduced trajectory can be properly used for traffic/transportation applications.  
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In summary, the specific objectives of this research are: 

• To develop and evaluate a method to better understand the traffic situation an individual 

vehicle is experiencing. This method will later provide a foundation for developing data 

reduction strategies. 

• To develop and evaluate a classifier to identify the stop-and-go situation in traffic from the 

point of view of an individual vehicle. 

• Testing and validating the VFS classifiers using a large dataset, where trajectories were 

collected in different traffic conditions. 

• Propose two adaptive sampling methods for GPS based vehicle trajectory data based on 

the estimated vehicle flow state and identified stop-and-go information. 

• Comprehensive performance evaluation of the reduced trajectory data (which is obtained 

after applying the proposed sampling methods) while compared to the results using a few 

existing trajectory compression algorithms. 

• Testing and validating the effectiveness of reduced trajectory data (which is obtained after 

applying the proposed sampling methods) on traffic/transportation applications. 

• Testing and validating the effectiveness of the reduced trajectory data in enhancing user’s 

privacy. 

 RESEARCH CONTRIBUTIONS 

The contributions of this research can be summarized as follows. 

• A complete understanding of the motion of an individual vehicle in the form of Vehicle 

Flow State (VFS). This understanding will help to identify critical segments in a trajectory. 
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• A method to identify ‘stop and go’ state of an individual vehicle using location data from. 

The proposed method is from the perspective of an individual vehicle which is different 

from the existing methods on traffic oscillation where most studies considered vehicle 

platoons (i.e., multiple vehicles). 

• Two novel data compression methods for resampling GPS based trajectory data. These 

methods utilize the estimated VFS of the trajectory and reconstruct the trajectory by only 

keeping the most critical data points.  

• Extensive performance evaluation of the proposed trajectory resampling methods on 

multiple datasets which includes a large dataset with millions of trajectories collected from 

ridesourcing vehicles. 

• Comprehensive performance evaluation of the reduced trajectory data (which is obtained 

after applying the proposed resampling methods) while compared to the results using a few 

other existing trajectory compression algorithms using multiple datasets. 

 STUDY SCOPE 

This research is focused on solving a set of issues related to GPS based trajectory data 

collection and sampling. The trajectory data were collected using mobile devices on probe vehicles 

in mostly urban setting. While many of the concepts and methods developed in this research may 

also apply to GPS data collected from other modes (such as bike, trains, etc.) and non-

transportation applications (such as fitness tracking), a great deal of additional complexity may be 

introduced for those applications, which is beyond the scope of this research. That said, the work 

described here may provide useful insight into a wide range of scenarios that may be studied in 

the future. 
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There are numerous factors that can complicate the process of compressing GPS vehicle 

trajectory data while making sure the compressed data is still useful for transportation applications. 

The location accuracy of GPS data is one such factor, along with communications reliability, 

application design, and performance, among others. The work described here does not deal with 

these issues, which should be investigated in future research.   

 DISSERTATION ORGANIZATION 

The work described in this dissertation has four major components: 1) The development and 

evaluation of a ‘batch’ algorithm to resample previously collected GPS-based vehicle trajectory 

data. This batch algorithm is called self-adaptive sampling (SAS) in this study. 2) The development 

and evaluation of an online algorithm to resample vehicle trajectory data as they are being 

collected. This online algorithm is called self-adaptive online trajectory sampling (SAOTS). 3) 

Comparison of SAS and SAOTS with three existing trajectory compression algorithms. And 4) 

The development of a semi-supervised technique to identify VFS of the probe vehicle.  Figure 1.3 

illustrates the relationship between different components of this study and the connection between 

SAS and SAOTS. 



www.manaraa.com

11 

 

11 

 

 

Figure 1.3. Schematics of different components of the dissertation 

The remainder of this dissertation is structured as follows. Chapter 2 covers relevant pieces 

of literature on trajectory compression algorithms, short-term estimation and prediction of traffic 

flow state, traffic system performance measurement using mobile data, and privacy Issues in traffic 

data collection. Chapter 3 describes the SAS strategy to resample a GPS based trajectory data.  

This chapter introduces the concept of vehicle flow state (VFS) and an HMM-based classifier to 
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identify the VFS of an individual vehicle. Moreover, to better understand the nature of the traffic 

experienced by the probe vehicle, an SVM based model to identify ‘stop and go’ segments in the 

trajectory is presented in this Chapter. Chapter 4 presents the SAOTS algorithm. Different 

components of the SAOTS algorithm which include online segmentation of a trajectory and 

sampling based on spectral-domain properties are discussed in detail in this chapter. In Chapter5, 

SAS and SAOTS are compared with three other existing trajectory compression algorithms using 

two datasets. A semi-supervised method for VFS estimation is investigated in Chapter 6. Chapter 

7 concludes the dissertation with a short discussion on the contributions of this study and the scopes 

of future research.  
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 LITERATURE REVIEW 

Recent research development in mobile sensing data focuses on several major areas such as 

predicting short term traffic conditions, modeling the system performance measures (such as travel 

time, delay, queue length, etc.), and assessing privacy issues related to the collection and use of 

mobile sensing data. The scope of this research includes all of these areas as we are interested in 

developing state-dependent sampling method for mobile sensing data by estimating traffic state 

and evaluating the effectiveness of the reduced data in traffic modeling applications and privacy 

protection. The following sections provide a literature review for each of these research areas. 

 TRAJECTORY COMPRESSION METHODS FOR GPS-BASED VEHICLE 

TRAJECTORY DATA 

In recent years, GPS technology has become increasingly available and more accurate. 

However, collecting vehicle trajectory data from individual GPS devices still costs a considerable 

amount of battery power and imposes overhead for communication, computing, and data storage. 

Furthermore, many real-world applications do not really need location data sampled at high 

frequency (e.g., every second). To address this issue, trajectory compression (or resampling) 

strategies have been proposed, which aim to reduce the size of a trajectory without compromising 

much precision in its new data representation (Lee and Krumm, 2011). Existing trajectory 

compression algorithms can be categorized using two different criteria. The first criterion is 

whether an algorithm can run online (or near real-time) or not. The second criterion is whether 

traffic/transportation knowledge is used in the trajectory compression algorithms. Based on the 

first criterion, trajectory compression algorithms can be categorized as “batch” algorithms or 
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“online” algorithms. Using the second criterion, trajectory compression algorithms can be 

categorized as “trajectory geometry-based” algorithms or “knowledge-based” algorithms. 

Batch algorithms reduce the size of a trajectory after the original trajectory is fully collected 

at a high sampling frequency (e.g., one data point every second). Among the batch algorithms, 

perhaps the most common is the Top-down (Douglas and Peucker, 1973; McMaster, 1986) and 

the Bottom-up algorithms (Keogh et al., 2001). Top-down algorithms start with considering a non-

segmented trajectory as one major segment. Next, it finds the best location for the partition of the 

trajectory into two segments. For each of the newly formed segments, the process of division into 

two new segments is repeated in an identical manner until some of the pre-defined stopping criteria 

(e.g., the maximum number of segments, and/or the approximation error (a user-specified 

threshold) is satisfied. Bottom-up algorithms are a natural complement to the Top-down 

algorithms, which begin by dividing the original trajectory into a large number of very small 

segments with equal lengths. In the next step, based on the comparison of each pair of consecutive 

segments, the pairs that cause the smallest increase in the error are being identified, and 

consequently merged in one new, bigger segment. The algorithm repeats these steps until some of 

the defined stopping criteria (similar to those of the top-down algorithms) is satisfied. 

Online algorithms compress a trajectory almost instantly as the vehicle travels and the data 

are collected. The most popular online algorithm is the Sliding Window algorithm (Shatkay, 1995; 

Park and Lee, 1999). The algorithm works by anchoring the left point of a potential segment as 

the first data point of a trajectory, then attempting to approximate the data to the right with 

increasing longer segments. At any point 𝑖, an error is defined. If the error at point 𝑖 is larger than 

a user-specified threshold, the subsequence from the anchor to the (𝑖 − 1)th point is transformed 

into a segment. Only the first and last data points of the segment are retained in the reduced 
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trajectory. The anchor is then moved to location 𝑖, and the process repeats until the entire trajectory 

is transformed into a piecewise linear approximation. 

In general, it is seen that batch algorithms tend to be superior in terms of trajectory 

reconstruction from the compressed data, while online algorithms can ensure that the 

collected/reduced trajectories can be accessed near real-time. Keogh et al. (2001) proposed an 

algorithm to combine the benefits of the two types of methods, called the SWAB (Sliding Window 

and Bottom-up) algorithm. Its name indicates that it is a direct result of the combination of the 

Bottom-up approach and the Sliding Window method to retain both trajectory reconstruction 

quality and online nature. 

Although most existing trajectory compression algorithms are computationally efficient, they 

have a few limitations. One of the prime issues is that they frequently eliminate important points, 

such as sharp angles. A secondary limitation is that straight lines are still over-represented 

(Douglas and Peucker, 1973) unless small differences in angles are used as another discarding 

condition. An algorithm to overcome the first limitation was reported by Jenks (1981) and involved 

evaluating the perpendicular distance from a line connecting two consecutive data points to an 

intermediate data point against a user threshold. To tackle the second disadvantage, Jenks (1985) 

utilized the angular change between three consecutive data points. 

A unique feature of the above-reviewed trajectory compression methods (either the batch 

algorithms or the online algorithms) is they are solely based on the geometry of a trajectory. Out 

of traditional trajectory geometry-based compression algorithms, many scholars have focused on 

different perspectives. For example, Birnbaum et al. (2013) proposed a trajectory simplicity 

algorithm based on sub-trajectories and their similarity. Long et al. (2013) proposed a polynomial-
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time algorithm for optimal direction-preserving simplification, which supports a border 

application range than position-preserving simplification. Nibali and He (2015) proposed an 

effective compression system for trajectory data called Trajic, which can fill the gap of good 

compression ratio and small error margin. Muckell et al. (2011) put forward the Spatial QUalIty 

Simplification Heuristic method. Chen et al. (2012) proposed a Multiresolution Polygonal 

Approximation algorithm, which compressed trajectories by a joint optimization on both the LSSD 

and the ISSD criteria. In 2014, Muckell et al. proposed a new algorithm, SQUISH-E, which 

compresses trajectories with provable guarantees on errors. An extensive review of trajectory 

geometry-based batch and online algorithms can be found in (Keogh et al. 2001; Meratnia, and 

Rolf, 2004; Lovrić et al. 2014). An important limitation of geometry-based trajectory compression 

algorithms is that, since they are purely geometry-based, they often use the perpendicular distance 

of a data point to a proposed generalized line as the condition to discard or retain the data point. 

This may result in inadequate data records in some cases as discussed in Zheng (2015).  

In the literature, another type of algorithms used map-matching methods to compress vehicle 

trajectories (Cao and Wolfson, 2005; Kellaris et al., 2013; Liu et al., 2014; Song et al., 2014). 

These algorithms first used map-matching methods to project GPS data points into a road segment, 

then transformed the locations of these points into road segment IDs and offsets. An important 

feature with such algorithms is that they require additional road network information which may 

not be available in some cases. In addition, using these algorithms, compression is achieved on the 

map-matched trajectory points in the road segment, instead of the original data points of the 

trajectory. This could be an issue if a vehicle is not traveling on a well-defined roadway network. 

For these reasons (primarily for the reason that the underlying road network for the datasets used 

in this research is unknown), it is difficult to compare the map-matching-based trajectory 
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compression algorithms with other compression algorithms that do not require road network 

information.  

Table 2.1 summarizes the features and representative studies for the trajectory compression 

methods in the literature. This study focuses on algorithms that do not rely on road network 

information. It needs to be emphasized first that such compression methods share two similar 

major steps: (i) segmentation to divide an entire trajectory into multiple segments; and (ii) 

sampling to decide which data points to keep or discard. These algorithms differ in the details of 

how segmentation and sampling are done. The geometry-based algorithms segment a trajectory 

using the shape (geometry) of the trajectory only, which break the trajectory at data points where 

certain error criterion is met (e.g., the Euclidean distance from the point to a line approximation of 

the segment).The distinction of this research from the existing literature is that, in this study, 

instead of just using the geometric properties of the trajectory, the focus is on the intrinsic features 

of vehicle trajectories over time in the form of vehicle flow state (VFS) that can better reveal the 

underlying vehicle moving conditions. Such ‘traffic knowledge’ revealed by vehicle trajectories is 

used in vehicle trajectory compression to not only reduce the data size but also to make sure the 

reduced trajectory can be properly used for traffic/transportation applications. Such use of 

transportation domain knowledge in form of VFS is unprecedented in trajectory compression 

literature, which distinguishes this research from existing research. 
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Table 2.1. Summary of the existing trajectory compression methods (algorithms). 

TC 

Algorithm 
Representative Studies User Can Specify 

Real-Time 

Application? 

Traffic 

Knowledge 

Road 

Network 

Information 

SAS Siddique and Ban (2018) Sampling interval No Yes No 

Sliding 

Window 

Shatkay (1995), Park and 

Lee (1999) 

Maximum Segment 

Error 
Yes No No 

Bottom Up 

Hunter and McIntosh 

(1999), Keogh and 

Pazzani (1999) 

Total Segment Error, 

Number of Segments 
No No No 

SWAB Keogh et al. (2001) 

Total Segment Error, 

Maximum Segment 

Error, Number of 

Segments 

Yes No No 

MMTC-

App 
Kellaris et al. (2013) Compression Rate Yes No Yes 

PRESS Song et al. (2014) Compression Rate No No Yes 

SUTS Liu et al. (2014) Distance Deviation No No Yes 
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 SHORT-TERM ESTIMATION AND PREDICTION OF TRAFFIC FLOW STATE 

Numerous tools and algorithms have been applied in the area of traffic flow state estimation 

and short-term traffic prediction. Kalman Filtering is one of the most commonly used techniques. 

The Kalman Filtering (KF) method was used for traffic volume prediction by Okutani and 

Stephanedes (1984). Yang et al. (2004) proposed a Recursive Least Square (RLS) approach for 

short-term traffic speed prediction by means of KF to adapt to changing patterns quickly, based on 

the maximum likelihood method and Bayesian rule. Xie et al. (2006) conducted a study to combine 

the Wavelet decomposition with the KF method for short-term traffic speed prediction. They 

showed that the wavelet KF model consistently outperformed the KF model in terms of both 

accuracy and stability and that a higher data decomposition level was more advantageous for non- 

stationary data prediction. In another study by Xia and Chen (2009), a dynamic short-term corridor 

travel time prediction model was developed using the KF method, which involves a multi-step-

ahead prediction of traffic condition with a seasonal autoregressive integrated moving average 

model. In conjunction with KF, Wang and Papageorgiou (2008) proposed an approach for real-

time adaptive estimation of traffic flow variables based on stochastic macroscopic traffic flow 

modeling. Recently, Guo and Williams (2010) proposed an autoregressive moving average plus 

generalized autoregressive conditional heteroscedasticity structure for modeling the station-by-

station traffic speed series to forecast the short-term traffic condition level and uncertainty. They 

employed an online algorithm based on layered KF for processing the heteroscedasticity structure 

in real-time. 

Another method for traffic estimation and forecasting is based on Time Series models. Hamed 

et al. (1995) developed a Time Series model to predict future traffic volumes on urban arterials 

using the Box–Jenkins approach. Lee and Fambro (1999) applied the subset Autoregressive 
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Integrated Moving Average (ARIMA) model for short-term freeway traffic volume prediction. 

Similarly, Williams and Hoel (2003) modeled univariate traffic condition data streams as seasonal 

Autoregressive Integrated Moving Average processes. In other another study, Smith et al. (2002) 

compared the parametric modeling approach of ARIMA and non-parametric regression models 

for short term traffic flow forecasting. It is concluded that heuristic forecast generation methods 

did significantly improve the performance of nonparametric regression, but they did not equal the 

performance of seasonal ARIMA models and traffic condition data is characteristically stochastic 

rather than chaotic. More recently, Shekhar and Williams (2007) suggested adaptive seasonal 

models for univariate traffic flow forecasting through the use of three well-known filtering 

techniques: the Kalman filter, recursive least squares, and least mean squares. Time Series models 

were also used for short-term traffic speed prediction. Using two algorithms, Expectation-

Maximization (EM) and the Cumulative Sum (CUSUM) algorithms, into ARIMA Time Series 

model, Cetin, and Comert (2006) proposed an adaptive approach for traffic speed prediction. The 

proposed approaches were tested on a publicly available loop dataset collected by the California 

PATH with detailed records of all incidents. The study showed that compared to the ARIMA 

model, the two adaptive techniques provide more accurate results when the data generation process 

is not stable. Chandra and Al-Deek (2009) developed a vector autoregressive Time Series model 

to predict traffic speed and volume of a 4-km (2.5-mile) segment of I-4 Orlando, Florida. 

In addition to Time Series models, Neural Network (NN) models are another class of methods 

successfully used for short-term traffic prediction. Smith and Demetsky (1994) introduced the 

back-propagation neural network model for traffic volume prediction. Park et al. (1998) conducted 

a study to apply a Radial Basis Function (RBF) neural network in prediction short-term freeway 

traffic volumes. Yin et al. (2002) developed a fuzzy-neural model (FNM) to predict the traffic 
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flows in an urban street network. The model consisted of two modules: a gate network (GN) and 

an expert network (EN). Ishak et al. (2003) optimized short-term traffic prediction performance 

by using multiple topologies of dynamic neural networks under various parameters and traffic-

condition settings. In order to improve the performance of the NN models, many hybrid models 

were proposed. For instance, Abdulhai et al. (1999) developed a system based on Time Delay 

Neural Network (TDNN) model synthesized using Genetic Algorithm (GA) for short-term traffic 

prediction. Alecsandru and Ishak (2004) proposed a hybrid model-based and memory-based 

methodology to strengthen predictions under both recurrent and non-recurrent conditions. The 

model-based approach relied on a combination of static and dynamic neural network architectures 

to achieve optimal prediction performance under various input and traffic condition settings. 

Vlahogianni et al. (2005) incorporated GA to optimize the learning rule as well as the network 

structure. The GA approach was composed of three steps: selection, crossover, and mutation, built 

on the principles of genetics. Many other NN models on short-term traffic prediction were found 

in the literature (see for instance Jiang and Adeli, 2005; Ishak and Alecsandru, 2004, and Shen and 

Hadi, 2010). 

In summary, the literature review showed that KF, Time Series, and NN models are the most 

commonly used methods for short-term traffic estimation and prediction; most approaches aimed 

to construct models to estimate traffic speeds or volumes using fixed location sensor data. In this 

study, the traffic flow state estimation model uses mobile sensing data, which focuses on 

identifying the states of small segments in vehicle trajectories and attempts to capture the 

characteristics of traffic states based on the speed variation of the vehicle. This study proposes a 

stochastic approach, the Hidden Markov Model (HMM), for estimating traffic flow state. HMMs 

are commonly used for speech, handwriting, and gesture recognition. Recently, Kwon and Murphy 
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(2000) used coupled HMMs to model freeway traffic and predict traffic speed. Their study defined 

two states (congestion and free flow) using the mean speed. Statistical inference algorithms were 

required to train the model, which was not computationally effective even with a small dataset (10 

x 60 observations). The study concluded that the predicted speeds using this method were not very 

accurate. In this study, an HMM and SVM based model is developed and calibrated using real-

world mobile traffic data.  

 TRAFFIC SYSTEM PERFORMANCE MEASUREMENT USING MOBILE DATA  

Queue length is one of the most crucial performance measures for signalized intersections 

(Balke et al., 2005). Many early studies assumed discrete arrivals and integer cycle lengths, and 

Markov chain or similar statistical analysis techniques were applied to estimate the mean or 

distribution of queue lengths (Haight, 1959; Newell, 1960; Darroch, 1964; McNeil, 1968). Data 

collected from mobile sensors are principally different from those from fixed location sensors: 

fixed location sensors collect aggregate information such as flow and occupancy from the entire 

traffic stream, while mobile sensors collect finer location information of a vehicle from a sample 

of the traffic stream (Sun and Ban, 2013). Therefore, traffic volume or occupancy information, 

which is the main input to most existing fixed-location-data-based queue estimation methods, is 

generally not available from mobile data. Recently, investigating the feasibility of using mobile 

sensors for performance measurement of traffic systems such as signalized intersections, has 

received much attention. Early research focused on freeway traffic (Lu and Skabardonis, 2007; 

Herrera et al., 2010; Herrera and Bayen, 2010). The methods were based on shockwave theory or 

Kalman filtering for continuous flow. Comert and Cetin, (2009); Izadpanah et al., (2009); Cheng 

et al., (2010) focused on queue length estimation from vehicle trajectories directly. Ban et al. 

(2009) showed that sample intersection travel times can be used to estimate real-time intersection 
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delay patterns. Ban et al. (2011) further proposed a method to estimate real-time queue lengths of 

a signalized intersection using sample travel times. Cheng et al. (2012) constructed real-time queue 

length by analyzing the detailed vehicle trajectories from mobile sensors. Argote et al. (2011) 

developed models for evaluating several measures of effectiveness using Connected Vehicle data. 

Most mobile-data-based queue length estimation methods were mainly developed by assuming 

uniform arrivals at the intersection, and that acceleration and deceleration of vehicles can be 

ignored (Cheng et al., 2012; Ban et al., 2011). Hoifeiner et al. (2013) presented a hybrid modeling 

framework based on traffic flow theory and machine learning for estimating and predicting arterial 

traffic conditions using streaming GPS probe data. The results indicate that this approach is a 

significant step forward in estimating traffic states throughout the arterial network using a 

relatively small amount of real-time data. 

Hao et al. (2013) proposed a kinematic equation-based method to estimate the location of a 

vehicle in the queue based on the vehicle’s travel time traversing a signalized intersection without 

any prior assumptions about vehicle arrivals. The method focuses on the discharging process of 

the vehicle by investigating its acceleration starting from the queued location to downstream 

locations passing the intersection. Three cases for through movements and six cases for left-turn 

movements were discussed to estimate a vehicle’s location in a queue. For each case, the authors 

illustrated the trajectory, analyzed the unique feature of the trajectory, and developed equations 

and inequalities to calculate the acceleration rate and queue location simultaneously. 
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 PRIVACY ISSUES IN TRAFFIC DATA COLLECTION AND USE  

The growth of mobile devices also comes with concerns about location privacy. Questions 

have been asked regarding the risks if location data leaks to an unwanted third party and how we 

can avoid the adverse consequences of a location leak. Beresford and Stajano (2003) define 

location privacy as the ability to prevent other parties from learning one’s current or past location. 

This definition captures the idea that the person whose location is being measured should control 

who can know it.  It also recognizes that past location information is important to protect.    

Duckham and Kulik (2006) refined the concept of location privacy by defining it as a special type 

of information privacy which concerns the claim of individuals to determine for themselves when, 

how, and to what extent their location information is communicated to others.  

Progress in computational location privacy depends on the ability to quantify location privacy. 

There is not yet a standard for this; it is even rare for two different research projects to use the 

same method of quantification.  Since location can be specified as a single coordinate, one way to 

measure location privacy is by how much an attacker might know about this coordinate. For 

instance, Hoh and Gruteser (2005) quantify location privacy as the expected error in distance 

between a person’s true location and an attacker’s estimate of that location. The consequences of 

a location leak range from the uncomfortable creepiness of being watched, to unwanted revelations 

of a person’s activities, to actual physical harm. Hoh et al. (2006) used a database of week-long 

GPS traces from 239 drivers in the Detroit, MI area.  Examining a subset of 65 drivers, their home-

finding algorithm was able to find plausible home locations of about 85%, although the authors 

did not know the actual locations of the drivers’ homes. A similar attack was simulated against 

two weeks of GPS data from 172 drivers in Krumm (2007). The drivers’ home latitude and 

longitude were first determined with simple algorithms, giving a median error of about 61 meters 
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compared to the drivers’ actual home addresses.  Using a reverse white pages lookup, these 

coordinates correctly identified 13% of the drivers’ home addresses and 5% of their names. 

Gruteser and Hoh (2005) worked with GPS data that had been completely anonymized in that not 

even a consistent pseudonym was supplied with the time-stamped latitude and longitude 

coordinates. They used a standard technique from multi-target tracking proposed by Blackman 

(1986) to accurately cluster the measured GPS points from three people. This demonstrates that 

even mixing together coordinates from different people is not enough to prevent an attacker from 

reassembling them into coherent, individual tracks.  

One of the common privacy techniques is anonymization (Sweeney, 2002; Rass et al., 2008; 

Stenneth and Yu, 2010), which guarantees the anonymity of an object using one pseudonym, i.e., 

a randomly generated ID, throughout the dataset or dynamic pseudonyms (periodically updating 

the current ID with randomly generated pseudonym), and pure anonymity (removing the IDs for 

all the data points completely). However, pseudonyms are subject to privacy breaches with hidden 

information and domain knowledge. For example, Machanavajjhala et al. (2006) pointed out when 

the sensitive attributes in a dataset are of little diversity, or when the adversaries have access to 

external data sources, pseudonyms can be easily breached. More sophisticated approaches have 

been developed to enhance anonymity, mainly by perturbing data accuracy or restricting the 

release of certain location information data points; called obfuscation (Ardagna et al., 2007; 

Agrawal and Srikant, 2000; Kargupta et al., 2003; Gruteser and Grunwald, 2003; Gedik and Liu, 

200)5. Location data perturbed by such methods, however, can rarely be used for applications that 

require fine-grained location traces. Similarly, reducing sampling frequency (Tang et al., 2006) or 

using dummies (Kido et al., 2005; Lu et al., 2008; Nergiz et al., 2009) may also severely degrade 

location information.  



www.manaraa.com

26 

 

26 

 

Sun et al. (2013) developed privacy mechanisms that would simultaneously satisfy privacy 

protection and data needs for fine-grained urban traffic modeling applications using mobile 

sensors. To accomplish this, the authors proposed a virtual trip lines (VTLs) zone-based system 

and related filtering approaches. Traffic-knowledge-based adversary models were developed to 

evaluate the performance of the VTL zone method, especially in terms of the filtering algorithms. 

The results show that this “Privacy-by-design” approach ensures an acceptable level of privacy, 

and the released datasets from the privacy-enhancing system can also be applied to urban traffic 

modeling with satisfactory results.   
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 THE SELF-ADAPTIVE SAMPLING (SAS) METHOD 

 OVERVIEW OF SAS METHOD 

This section provides an overview of the proposed self-adaptive sampling (SAS) method. On the 

sensor side, trajectories of individual vehicles are originally recorded at a relatively high sampling 

rate (e.g., every second). The objective of developing SAS method is to decide which of the 

original data points will be retained and sent to say a central server, based on the estimated VFS. 

The VFS in this study can be considered as the state of either a trajectory data point or a trajectory 

segment (that contains multiple consecutive data points), where the vehicle undergoes a specific 

type of motion. The VFS of a segment is determined by the VFS of its constituent data points to 

indicate that data points in the segment represent a distinct motion from those of the neighboring 

segments. For example, a segment in a trajectory where the vehicle cruises in free-flowing 

condition will have the VFS to indicate “free-flowing” until it starts to decelerate/accelerate 

consistently. Furthermore, VFS here closely resembles the kinematic motion of an individual 

vehicle, not the overall traffic condition of the roadway location, which can be captured by the 

speed (also acceleration/deceleration) of the vehicle. There are two reasons for using the VFS of 

an individual vehicle instead of the overall traffic state. First, the state of a vehicle better reflects 

what that specific vehicle is experiencing (which might be different from what the other vehicles 

are experiencing), and thus is more appropriate to use to design the sampling scheme for that 

vehicle. Secondly, since the proposed method is implemented on the vehicle (sensor) side, 

information/data about the other vehicles are often not available, making it extremely difficult for 

the method to focus on the state of the overall traffic. This is especially true when the data are 

collected in a crowdsourcing manner from an ad-hoc, dynamic user base (e.g., most mobile app-

based applications such as google map). Notice here that by focusing on individual vehicle 
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trajectories, the proposed method may not accurately reflect the actual state of the entire traffic 

flow. This is an important feature of the proposed SAS method. For example, even the overall 

traffic is light and free-flowing, a specific vehicle might drive slow or even stop for certain reasons. 

In this case, the slowdown and stop states of the vehicle should be collected (e.g., by the proposed 

method) for later analysis. On the other hand, if the proposed method had been based on the overall 

traffic state, such information would be lost as the sampling rate would be small (since the traffic 

is free-flowing). It may also be true that VFS may be associated with external features such as lane 

changing and driving behavior. However, such data are not directly available from vehicle 

trajectory data and are thus not used in the SAS method in this study. Figure 3.1 illustrates the 

model architecture of SAS. 

In this study, four types of VFS are considered:  

• Free Flow: in this state, the vehicle moves in a relatively constant speed. 

• Stopped: when the vehicle is stationary. 

• Acceleration: when the vehicle is speeding up. 

• Deceleration: when the vehicle is slowing down. 
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Notice that these four states are “hidden” since they are not easily observable based on the 

vehicle trajectory data (e.g., instantaneous speeds and accelerations/decelerations). The SAS first 

groups each trajectory into segments (i.e., smaller pieces of the trajectory), called “trajectory 

segmentation” in this research. The segmentation is done in two steps, as shown in figure 3.1. In 

the first step, the VFS for each data point of the trajectory is classified. A trained hidden Markov 

model (HMM) is used for this purpose. The HMM classifier labels each individual points of a 

trajectory in one of four states listed above: Free Flow, Stopped, Deceleration, and Acceleration. 

After this first classification step, data points with the same VFS are grouped together. At this 

point, the entire trajectory is broken into small segments with known VFS. The next step is to 

identify potential stop and go segments in the trajectory. To achieve this, the parts of the trajectory 

that lies between the free flow segments are investigated. A Support Vector Machine (SVM) 

classifier is used to identify stop-and-go segments in the trajectory. Once the segmentation is done, 

different sampling strategies can be applied to the segmented trajectory to reduce the data size. 

The HMM model and SVM model developed in this study are trained in advance using historical 
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data. The following sections (section 3.2 and section 3.3) provide more details of the HMM and 

SVM models respectively. Note that HMM and SVM are used in this study since they help achieve 

reasonable performances of the SAS method. Other learning methods may also be used and may 

achieve similar or even better performances, which however will not change the main contribution 

or results (i.e., the SAS related concept and methods) of this research. 

 VEHICLE FLOW STATE IDENTIFICATION OF INDIVIDUAL TRAJECTORY 

POINTS USING HMM 

An HMM is a statistical Markov model in which the system being modeled is assumed to be 

a Markov process with unobserved (hidden) states. An HMM can be considered the simplest 

dynamic Bayesian network. The mathematics behind the HMM was first developed in Baum et al. 

(1966). The main reason to choose the HMM method is its simple, ‘memoryless’ property, which 

helps to apply the model in applications where real-time feedback can be crucial.  

To apply the HMM in this study, let us consider a vehicle that may be described at any time 

as being in one of the four (hidden) states: Stopped, Free Flow, Acceleration, and Deceleration. At 

regularly spaced discrete times, the vehicle undergoes a change of states according to a set of 

probabilities associated with the state. We cannot see the process of the state transitions, but we 

can see a set of observable outputs that are related somehow to the hidden states. In the case, the 

observations are the trajectories (here the focus in on the instantaneous speeds) of vehicles. There 

are two main reasons for using the instantaneous speed of the vehicle as the only observations in 

HMM. First, it can decently reflect the kinematic motion of the vehicle (which is closely related 

to the hidden state) without using any additional variables. Secondly, the instantaneous speed of 

the vehicle can be easily accessible in real-time. 
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To apply the HMM, the continuous speed is discretized into three separate categories as 

shown in table 3.1. Since in the traditional HMM the observations are discrete categories, different 

ways to discretize the instantaneous speeds are extensively investigated. The number of discrete 

categories and the threshold values for discretizing instantaneous speeds are selected after 

carefully analyzing speed changing patterns from some probe vehicle trajectories. The analysis 

showed that using the values given in Table 3.1 provides a balanced model with a satisfactory 

result and comparatively less complicated parameters. A vehicle can roughly be considered as 

‘Stopped’ when its instantaneous speed is less than 3 𝑚𝑝ℎ; in an urban roadway, where the speed 

limit is usually 30 𝑚𝑝ℎ, a vehicle with its speed larger than 20 𝑚𝑝ℎ may be considered as 

traveling in “high speed,” while a vehicle with its speed between 3 mph and 20 mph may be 

considered as traveling in “low speed”. It should be pointed out there here that, these threshold 

values may change depending on the vehicle, the location of the study site, and other characteristics 

of the traffic system, which could be calibrated using real-world data. For example, in the case of 

freeways, where the speed limit is higher than urban roadways, the upper threshold reflecting “high 

speed” could be larger than 20 𝑚𝑝ℎ. To calibrate those threshold values for a specific 

location/vehicle, vehicle trajectories need to be collected and analyzed as described above. 
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Table 3.1. Speed discretization rule. 

Category Discretization Rule 

1 (“stopped”) Speed ≤ 3 mph 

2 (“low speed”) 3 mph < Speed ≤ 20 mph 

3 (“high speed”) Speed > 20 mph 

An HMM consists of three parameters: the prior vector (denoted as 𝜋), the state transition 

probability matrix (denoted as A), and the observation matrix (denoted as 𝐵).  In real applications, 

these parameters need to be trained/calibrated using data. In this study, the model parameters were 

trained (calibrated) using the Next-Generation SIMulation (NGSIM) dataset (Cambridge 

Systematics, 2007). For this, the VFS of each data point of 142 vehicle trajectories in the NGSIM 

dataset were first manually identified. The HMM parameters are then calibrated based on the 

identified VFS. In the following, details of each parameter are presented, together with the 

calibration results of the parameters used for the HMM model. Further details about the NGSIM 

dataset are given in section 3.5. 

Prior vector (𝜋) contains the probability of the (hidden) model being in a particular hidden 

state at time 𝑡 = 1.  It is the probability of the initial distribution. Here it is assumed that the vehicle 

trajectory always begins from a stopped state. If the trajectory starts from a different state, the prior 

vector can be changed accordingly. 

State transition Probability matrix(𝐴) is the probability of a hidden state given the previous 

hidden state. The matrix 𝐴 =  {𝑎𝑖𝑗 } is 𝑁 ×  𝑁 with:  

𝑎𝑖𝑗 =  𝑃 (𝑠𝑡𝑎𝑡𝑒 𝑆𝑗  𝑎𝑡 𝑡𝑖𝑚𝑒 (𝑡 +  1) |𝑠𝑡𝑎𝑡𝑒 𝑆𝑖 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡).                                                              (3.1) 
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Here N=4 is the number of hidden states in the process. As we already know the actual hidden 

state sequence (in form of manually identified VFS) in the vehicle trajectory, the state transition 

probability from state 𝑖 to state 𝑗 can be calculated by the following formula (Durbin et al., 1998): 

𝑎𝑖𝑗 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑡𝑜 𝑠𝑡𝑎𝑡𝑒 𝑗 𝑖𝑠 𝑡𝑎𝑘𝑒𝑛

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑡𝑜 𝑎𝑛𝑦 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑡𝑎𝑘𝑒𝑛
                        (3.2) 

Table 3.2 shows the State Transition matrix for the trained HMM, using the NGSIM data. 

From the table, it is evident that the transition probability from state ‘Free Flow’ to state ‘Stopped’ 

and vice versa is 0 (𝑎23 =  𝑎32 = 0 ). That is, if a vehicle is in Free Flow state, it cannot directly 

change to the Stopped state in the next time instant, or vice versa. For such kinds of transitions to 

happen, the vehicle must undergo an appropriate Deceleration or Acceleration state first. If a 

vehicle is cruising in the free-flow state in a given time instant, there is a 96.3% probability that 

the state will remain unchanged in the next time instant (𝑎22 = 0.963), a 2.2% probability that the 

vehicle will decelerate in the next time instant, and 1.5% probability that the vehicle will 

accelerate. Similarly, if the vehicle is stationary in a given second, there is a 95.9% probability that 

the state will remain unchanged (𝑎11 = 0.959) and a 3.7% probability that the vehicle will 

accelerate in the next time instant. The state transition probabilities are also shown graphically in 

figure 3.2. Note that NGSIM data are for urban arterials, and the obtained parameters here may be 

applied to urban streets as well. For other types of roadways, similar data collection and calibration 

process can be applied. Note also that there may be a long-term trend in the state transition 

probabilities due to changes in traffic and roadway conditions. In this case, the transition 

probabilities may be recalibrated periodically (e.g., every week or every month depending on the 

temporal characteristics of the change) to capture such trends.  
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Table 3.2. State transition matrix. 

 

Traffic Flow State of Next Data Point 

Stopped Free Flow Deceleration Acceleration 

Traffic Flow 

State of 

Current Data 

Point 

Stopped 0.959 0.000 0.005 0.037 

Free Flow 0.000 0.963 0.022 0.015 

Deceleration 0.070 0.012 0.919 0.000 

Acceleration 0.021 0.064 0.000 0.914 

 

The observation matrix (B) contains the probability of observing a particular observable state 

given that the hidden model is in a particular hidden state. 𝐵 =  {𝑏𝑗(𝑘)}𝑖𝑠 𝑎𝑛 𝑁 ×  𝑀  matrix with 

(M denotes the number of discretized speed categories) 

𝑏𝑗(𝑘) =  𝑃 (𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑘 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡 |𝑠𝑡𝑎𝑡𝑒 𝑆𝑗  𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡).                                                          (3.3) 

Figure 3.2. HMM for the traffic flow states with state transition probabilities 
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Here N = 4, and M = 3 for our study. Similar to the state transition matrix, the observation 

probability for an observation 𝑘 from state 𝑗 can be calculated by the following formula: 

𝑎𝑖𝑗 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑘 𝑖𝑠 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑗

 𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠 𝑎𝑛 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑡𝑎𝑡𝑒 𝑗
                          (3.4) 

Table 3.3 illustrates the observation matrix of the trained HMM. This matrix contains the 

probability of having a particular hidden state for a specific observation. For example, for the 

“Stopped” state, 95.9% of the time the observation should be 1 (“stopped”), and the rest of the 

time the observation should be 2 (“low speed”). Similarly, for the “Free Flow” state, 99.6% of the 

time the observation should be 3 (“high speed”). For the “Acceleration” and “Deceleration” states, 

observation probability is 100% for observation 2 (“low speed”). It means the vehicle speed is 

always going to be between 3 mph and 20 mph if the underlying vehicle flow state is either 

acceleration or deceleration. 

Table 3.3. Observation matrix. 

 

Observation Category 

1 (‘stopped’) 2 (“low speed”) 3 (“high speed”) 

State 

Stopped 0.959 0.041 0.000 

Free Flow 0.000 0.004 0.996 

Deceleration 0.000 1.000 0.000 

Acceleration 0.000 1.000 0.000 

Using these parameters, the sequence of VFS (hidden state) in any vehicle trajectory can be 

estimated using the Viterbi algorithm (Rabiner, 1989). The Viterbi algorithm is a dynamic 

programming algorithm for finding the most likely sequence of hidden states –called the Viterbi 
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path – that results in a sequence of observed events, especially in the context of Markov 

information sources and HMMs. The terms Viterbi path and Viterbi algorithm are also applied to 

related dynamic programming algorithms that discover the single most likely explanation for an 

observation. Details of the algorithm are omitted here. After the sequence of VFS is estimated, the 

consecutive data points with the same VFS are grouped together as a segment. Detailed results of 

applying the HMM for segmentation are presented in section 3.5. 

In this research, HMM was chosen as it can classify each vehicle trajectory point in real-time 

using a comparatively simpler model. The study has tried using a simple speed/acceleration-based 

heuristic to determine where the vehicle is traveling at free-flow speed or stopped. However, they 

were not able to classify vehicle flow state (VFS) as defined in the paper with sufficient accuracy. 

This is because the VFS in this study is defined as the underlying state of probe vehicle which is 

different from just observing the instantaneous of speed/acceleration. For example, while in the 

free-flowing state, the vehicle may have instantaneous acceleration or deceleration, but the VFS 

should still remain the same as it describes the general trend of the vehicle’s kinematic motion. 

The trained HMM model, on the other hand, was able to classify the VFS with higher accuracy 

than a simple heuristic and is thus applied in the research. 

 IDENTIFICATION OF ‘STOP AND GO’ SEGMENTS USING SVM: 

After the segmentation of a vehicle’s trajectory, the model further identifies the ‘stop and go’ 

segments in the trajectory. In the literature, the ‘stop and go’ condition is characterized by 

periodically enforced stops (or severe slowdowns), caused by heavy traffic congestion or traffic 

signals (Yeo and Skabardonis, 2009). This phenomenon is also known as traffic oscillation. During 

‘stop and go’, the vehicle decelerates, followed by acceleration, repeatedly. Between the slowing 
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down and speeding up, there may or may not be a completely stopped segment. For example, on 

highways due to heavy traffic or accidents, a vehicle may need to slow down and then speed up 

again without stopping. Other types of ‘stop and go’ can be found in congested urban roadways or 

near intersections where vehicles are compelled to stop completely. In order to identify ‘stop and 

go’, the main challenge is to distinguish between traffic oscillation and stops at intersections when 

the traffic signal is red. This problem is dealt with by developing an SVM classifier. SVM is a 

widely used supervised learning technique, which can be applied for binary and multi-class 

classification (Vapnik, 1995). Comprehensive studies of SVM can be found in Burges (1998) and 

Cristianini and Shawe-Taylor (2000).  

The key for designing a successful SVM classifier is to find appropriate features from the 

data. Since this research aims to further label some of the obtained segments from the previous 

step into ‘stop and go’ segments, the data here are the segments of a trajectory. The goal here is to 

classify whether a given segment is a ‘stop and go’ segment or not, i.e., a binary classification 

problem. It was found that the following features related to the variation of speeds and the 

frequency of stops with respect to time and space are the most effective in terms of identifying 

‘stop and go’ segments in a trajectory, which are salient characteristics of stop and go. 

1. Number of stops in a segment divided by the time duration of the segment  

2. Number of stops divided by the total distance traveled in that segment 

3. ‘Peak’ speed between stops divided by the maximum speed of the segment 

4. Maximum stop time of a single stop inside the segment divided by the time duration of 

the Segment  

5. Total stop time divided by the time duration of the segment 
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Notice that in some cases (e.g. feature 1, 4, 5), the actual features of the segment are divided 

by the time duration of the segment. The division helps when the duration of the potential stop and 

go segment vary substantially (from several seconds up to several minutes). Extracting the features 

this way makes the model more robust as it can handle large variations in the segment duration. 

The development of an SVM classifier contains a training step and a testing step. The training 

step is to calculate the optimal model parameters using historical data, while the testing step is to 

apply the calibrated SVM to determine the class (i.e., ‘stop and go’ or not) of a given sample (here 

a segment). This study uses a training dataset, denoted as (𝑥1, 𝑡1), … , (𝑥𝑖, 𝑡𝑖), … , (𝑥𝑁 , 𝑡𝑁),  

where 𝑁 = 281 is the total number of training samples which were curated from Field dataset (See 

section 6.1). Here 𝑥𝑖 ∈  𝑅5 is the input vector of extracted features for stop/go identification of the 

𝑖th sample, with 𝑡𝑖  ∈ {1, −1} as the corresponding label, with 1 for ‘stop and go’ segments -1 for 

segments that are not. Let us denote 𝜑(𝑥) a fixed feature space transformation also called the 

“kernel” (Cristianini and Shawe-Taylor, 2000), which transforms a vector 𝑥 = (𝑥𝑖)𝑖=1,…,𝑁 ∈ 𝑅5 in 

the original feature space to the transformed feature space. The reason for this transformation is to 

deal with classification problems that are not linearly separable (Lauer and Bloch, 2008). In this 

case, data need to be mapped into a higher dimensional feature space in which the transformed 

data are linearly separable in the feature space. Then a separating hyperplane (in the 2-D space, 

this will be a line) 𝑤𝑇𝜑(𝑥) +  𝑏 =  0 can be defined to separate samples of ‘stop and go’ (𝑡 = 1) 

and not (𝑡 = −1). Here 𝑤 and 𝑏 are parameters that define the separating hyperplane (e.g., the 

slope and intercept if the hyperplane is a line in the 2-D space).  

The training step aims to use a set of samples to find the optimal values of w and b, denoted 

as (𝑤∗, 𝑏∗). This is usually done by maximizing the margin of the two classes. For a separable 
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case, a margin is defined as the minimum distance between the points of the two classes, which is 

measured perpendicularly to the separating hyperplane. In our case, the extracted features are not 

strictly separable. In other words, it is impossible to correctly separate/classify all the samples 

using a separating hyperplane. To deal with this, the above problem can be extended by introducing 

the concept of soft margin that accepts some misclassification of the training samples. To 

accomplish this, a control variable C is incorporated to penalize the misclassified data points (i.e., 

stop/go segments misclassified as non ‘stop and go’ segments and vice versa). Parameter C is used 

to control the trade-off between the penalization of the errors and the maximization of the margin, 

which is determined using cross-validation techniques. For our particular problem, using 𝐶 = 10 

yields the best result with around 12% cross-validation error. It was also found that a polynomial 

kernel performs the best. The study used cross-validation to find the order of the polynomial 

kernel. It turns out that using the 6th-order polynomial kernel maximizes the accuracy of the 

classifier on training and testing data, which is evident in figure 3.3. In summary, the ‘stop and go’ 

segment identification error is about 12% if the 6th-order polynomial kernel and C=10 are used. 
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After training the classifier, the testing step is to determine the proper class (‘stop and go’ or 

not in this research) for a given testing data sample xt (trajectory segment in this research). Figure 

3.4 illustrates an example of ‘stop and go’ identification in a sample trajectory. Segments that are 

classified as ‘stop and go’ are shaded. It is noticeable that these trajectory segments undergo a 

rapid succession of deceleration, stop and acceleration – which is caused by ‘stop and go’. 

 

 

Figure 3.3. Optimizing SVM Parameters. 
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Figure 3.4. Results of 'stop and go' identification. 

 THE SAS STRATEGY  

After grouping the trajectory of a vehicle into segments labeled with specific VFS, a state-

dependent sampling strategy is applied to the trajectory. This means for different types of trajectory 

segments, different sampling rates are used. Table 3.4 illustrates the sampling strategies. It is 

important to note here that the SAS strategy presented in this study follows a rudimentary, rule-

based approach. The idea is to illustrate the effectiveness of the proposed SAS method in data 

reduction and traffic modeling applications. A more sophisticated strategy based on the proposed 

VFS estimation method could be a part of future research. It turns out that the state-dependent SAS 

strategy proposed here can reduce 67% -77% data records of the original vehicle trajectory, while 

Probable ‘stop 

and go’ 

segments 
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keeping the most critical data points, based on the datasets used in this paper as shown in the next 

section.  

Table 3.4. SAS strategy. 

Label of the segment Sampling rate 

Free Flow 
0.1 Hz (i.e., keep one data point for every 10 data points if the raw data are  

sampled every second) 

Stopped 
Varying rate (Keep the first two and last two points, and reject all data points  

in between  

Acceleration 1 Hz (i.e., keep all data points) 

Deceleration 1 Hz (i.e., keep all data points) 

Stop and go 1 Hz (i.e., keep all data points) 

 

 VFS ESTIMATION AND DATA REDUCTION 

The performance of VFS estimation is tested using two different datasets. The first one is the 

NGSIM vehicle trajectory data, collected on Peachtree Street in Atlanta, Georgia from 4:00 pm to 

4:15 pm on November 8, 2006. The original data sampling rate is 10Hz. The vehicle trajectories 

in the NGSIM dataset are shown in Figure 3.5. The second dataset consists of vehicle trajectories 

collected using GPS loggers from the Capital Region of New York. The sampling rate of these 

GPS traces is 1Hz. Figure 3.6 shows a sample trajectory of the Field dataset.  
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Figure 3.5. Space-Time graph of vehicle trajectories in NGSIM dataset. 

Figure 3.6. A sample trajectory in Field dataset. 
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To measure the accuracy of VFS estimation model, first, the actual VFS of all data records 

are manually classified using human judgment. Using the identified VFS, the HMM parameters 

are calibrated for the two datasets separately. This resulted in two sets of HMM parameters, which 

are then used for predicting the VFS from the two datasets respectively. When calibrating the 

HMM parameters, a 10-fold cross-validation technique was used to produce robust results. Note 

that the classifier first divides a trajectory into four distinct states (‘Stopped’, ‘Free Flow’, 

‘Acceleration’, ‘Deceleration’) and then identifies ‘stop and go’ from these four states. Since the 

performances of ‘stop and go’ detection (i.e., the SVM method) has already been discussed in 

detail in Section 3.3, this subsection only focuses on the performances of the VFS estimation 

method for the other four states. Table 3.5 summarizes the classifier performance, together with 

the data reduction rates.  

Table 3.5. Summary of VFS estimation results. 

Training Dataset  NGSIM  Field  

Number of Data Points 189964 16153 

Testing Dataset NGSIM  Field  NGSIM  Field  

Accuracy 87.92% 85.46% 83.02% 88.86% 

Data Reduction Rate  67.74% 76.34% 67.39% 74.89% 

 It is seen that in general the accuracy, which is defined as the average match between the 

model estimates and human judgment, ranges between 83%-89% for different cases. Accuracy is 

higher when the model parameters are calibrated and tested using the same dataset, although the 

performance difference is not very significant (about 5-10%). For example, in the case of HMM 

parameters calibrated using the field dataset, the average accuracy after 10-fold cross-validation is 
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around 89% while the accuracy is around 83% when tested on NGSIM dataset. Data reduction 

rates show similar performances (about 75% if trained/tested using the same dataset, and about 

67% if trained/tested using different datasets). The results in Table 3.5 clearly show some trade-

offs between available resources and model accuracy: if more resources are available, it is certainly 

desirable to train the models for different types of roadways/vehicles to achieve better 

performance; however if resources are not available, training the models using datasets collected 

from one site may still be used for other (similar) sites with reasonable (and degraded) 

performances. 

A low matching percentage between model prediction and human judgment is not desirable 

from the state estimation point of view, which however should not be a major concern for applying 

the SAS method to mobile data collection for two reasons. First, human judgment is just a 

benchmark to compare the proposed models, and not the real “ground truth” especially when 

acceleration/deceleration states are considered, as will be shown in more detail later. Secondly, as 

it is demonstrated next, such mismatch will result in less data reduction and more data points 

retained, which is more beneficial for traffic modeling applications, compared with human 

judgment.   

We further see that, in general, the data reduction rate is higher for the field dataset. The 

reason for this is probably the road network pattern in this dataset, which mainly consists of 

highways. In a highway setting, the vehicle is more likely to be on a free flow state compared to 

frequent acceleration and deceleration in an urban roadway. This often results in higher data 

reduction based on the SAS strategy. The NGSIM data, on the other hand, were collected on an 

urban roadway with frequent stops, which result in comparatively lower data reduction. 
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Figure 3.7 compares the model prediction results for the four different VFS with 

corresponding human judgment for all data points in all the vehicle trajectories in the NGSIM 

dataset. The total number of data records that are classified as ‘Free Flow’ is lower according to 

model prediction than that from human judgment. This is compensated by the VFS ‘Acceleration’, 

where the model predicted more data points to be in this state when compared to human judgment. 

Based on Table 3.4, the sampling rates are high for all the data records that are classified as either 

‘Acceleration’ or ‘Deceleration’, while the sampling rates are lower for data points identified as 

‘Stopped’ or ‘Free Flow’ state. The fact that the proposed model identifies more ‘acceleration’ 

points than human judgment implies that more data points (information) will be retained if the 

proposed method is applied for vehicle trajectory collection, which is beneficial for traffic 

modeling applications, while the data reduction rate is still very significant. As a result, the 

proposed method and human judgment represent slightly different trade-offs between data 

reduction and information retaining. While it is hard to argue which one is better, it is certainly 

true that the proposed SAS method may be applied for large-scale mobile data collection, but 

human judgment cannot. 
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Figure 3.7. Comparison of model prediction with human judgment for different vehicle flow 

states 

To further illustrate the performance of the vehicle state estimation method of individual data 

points, the model estimation results are compared against the VFS estimated by human judgment 

at each time instant. Table 3.6 gives the ‘confusion matrix’ of the classification for the NGSIM 

data. Each row of the matrix represents a state by human judgment, while each column a state by 

the proposed model. It was found that the most prominent type of mismatch occurs when individual 

data records identified as ‘Free Flow’ by human judgment are misclassified as ‘Acceleration’ by 

the model. Such mismatches are mainly from the times when a free-flowing vehicle further 

accelerates. According to human judgment, such data records are often considered to be in a ‘Free 

Flow’ VFS, whereas the proposed model predicts otherwise. In those cases, the model predictions 

can be actually more accurate than human judgment. In other words, human judgment is not 

necessarily the real “ground truth” especially when acceleration/deceleration states are considered.  
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Table 3.6. Confusion matrix for the classification of individual data records 

Number of time instances = 189964 

Predicted Vehicle Flow State 

Stopped Free Flow Deceleration Acceleration 

Human Judgment 

Stopped 87907 0 0 145 

Free Flow 0 45697 0 11270 

Deceleration 34 3 17107 82 

Acceleration 57 4 0 27658 

 

The percentage of individual data records where ‘Free Flow’ or ‘Stopped’ VFS are classified 

as either ‘Acceleration’ or ‘Deceleration’ by the proposed HMM model, or vice versa were 

investigated. In 99% of cases, ‘Free Flow’ or ‘Stopped’ are classified as ‘Acceleration’ or 

‘Deceleration’. This again implies that the SAS method will result in more retained data points 

and less data reduction, which is helpful for modeling applications, compared with human 

judgment. 

Figure 3.8 shows the two-step classification results for a single-vehicle trajectory. It is a space-

time graph of the trajectory. The slope of the graph denotes the instantaneous speed. Individual 

points are shown in different markers corresponding to their respective vehicle states. Figure 3.9 

shows the result of data reduction by SAS. The dashed line shows the trajectory and the green 

markers denote the (retained) data points after reduction by applying SAS. Notice that, most of the 

reduction occurs in the ‘free flow’ and ‘stopped’ segments.  
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Figure 3.8. Space-Time graph of a single vehicle trajectory showing VFS estimation 

results 

Figure 3.9. GPS data after SAS shown in a space-time graph of a vehicle trajectory. 
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 TRAFFIC MODELLING APPLICATIONS 

The effectiveness of the reduced data is further evaluated by certain transportation modeling 

applications in this subsection. In particular, this study focuses on the application of queue location 

estimation in Hao et al. (2015). This method studies the queue discharging process, which 

calculates the location (in the queue) and the acceleration rate of the vehicle simultaneously using 

kinematic equations. More details of the estimation method can be found in Hao et al. (2015) and 

are omitted here. The performance of the proposed method is measured by the Success Rate (the 

percentage of traffic signal cycles that the queue estimation method can be successfully applied to 

produce proper results), and the Mean Absolute Error (MAE) of estimated queue locations and 

queue times compared with observations, which is shown in the following equation. 

𝑀𝐴𝐸 =
∑ |∆𝑥𝑖|

𝑁
𝑖=1

𝑁
                                                                                                                                    (3.5) 

 Here 𝑥̅ is the estimated value, 𝑥∗ is the observed value, ∆𝑥𝑖 is the error term defined as  ∆𝑥𝑖 =

𝑥̅ − 𝑥∗. 

Table 3.7 summarizes the queue location estimation results. In addition to the field dataset 

and NGSIM dataset discussed above, this study also uses trajectory data from a simulation model 

developed for Fresno, CA as part of the Corridor Management Plan Demonstration project for 

California Department of Transportation (Liu and Jabari, 2008). It can be seen that the success 

rates are essentially the same for the original data and the reduced data when used for the queue 

location estimation method in Hao et al. (2015). The MAEs calculated using the reduced data are 

slightly higher than the original data in cases of field test and simulation data, which are much 

higher for the NGSIM data. The high MAEs associated with NGSIM data might be due to the fact 
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that the trajectories were processed from video data and contain noticeably errors for some 

trajectories, e.g., a vehicle going backward for a short period of time, which was reported 

previously in the literature (e.g., Ban et al., 2011). 

Figure 3.10 shows the variation of the Mean Absolute Errors and Success Rates with varying 

penetration rates. Simulation results are used to generate data for variable penetration rates. It is 

found that the success rates are consistent around 96% when the penetration rate is larger than 

40%. The MAEs for queue length and queue location decrease with the increase of penetration 

rates. The results indicate that the reduced data can produce slightly degraded but very similar 

results compared with the original data. 

Table 3.7.Queue Length estimation results for different data sets. 

 

Field Data Simulation Data NGSIM Data 

 
Original 

data 

Reduced 

data 

Original 

data 

Reduced 

data 

Original 

data 

Reduced 

data 

MAE (Queue Location) (ft) 
35.3853 41.1284 25.6831 27.846 37.7888 111.7089 

MAE (Queue Length) (# of 

vehicles) 
4.1168 4.3515 1.4326 1.5757 0.931 2.197 

Success rate (%) 
80% 80% 96.67% 96.67% 97.96% 100% 
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Figure 3.10. Comparison of queue location estimation results: original vs reduced data (simulation). 
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 PRIVACY IMPLICATIONS OF SAS 

Privacy can be defined as the unlinkability of a moving object for a certain distance/time (Sun 

et al., 2013). For urban environments, this study assumes that to satisfy modeling needs, some 

short traces of vehicles (say a few hundred feet) around an intersection are available. Then, privacy 

can be defined as the unlinkability of the short traces of the same vehicle over multiple (say 𝑀) 

intersections. In this study, 𝑀 is set to two, which provides the highest level of privacy protection. 

This means that one can collect short vehicle traces around one intersection, but such short traces 

should not be linked together for the same vehicle for two or more intersections. Notice that the 

proposed SAS method itself does not consider privacy protection. This subsection simply shows 

whether the reduced dataset after applying SAS can help to improve protecting privacy, by 

applying the VTL-zone method in Sun et al. (2013). 

To measure the effectiveness of the reduced data after applying SAS for privacy protection, 

the VTLzone-based system and related filtering approaches developed by Sun et al. (2013) were 

used, where traffic-knowledge-based adversary models were proposed and tested to evaluate the 

effectiveness of such a privacy protection system by making privacy attacks.  Sun et al. (2013) 

referred to releasing all the traces collected in a VTL zone as the ‘baseline approach’. It provides 

the least privacy (while the VTL zone system is applied), but the most usable data. To enhance 

privacy, they further proposed to filter out part of the location traces in the VTL zone. The filtering 

approaches include random sampling, individual probability-based, and entropy-based 

approaches. In terms of privacy protection, the performance of the privacy models can be evaluated 

by applying adversary models. In their paper, two criteria were proposed for privacy evaluation 

purposes, namely, the percentage of correctly tracked traces (P1), and the percentage of correct 

inferences (P2). P1 indicates the probability that the traces of one vehicle can be successfully 
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linked at two VTL zones, obtained by using the number of correct inferences divided by the total 

number of traces going through both the VTL zones. P2 is obtained using the number of correct 

inferences divided by the total number of inferences, which indicates how accurate the inferences 

are. These two measures are used in this study. 

The adversary models were implemented using different filtering approaches for both original 

and reduced data after applying the SAS method. This study uses the NGSIM dataset for this 

testing. First, SAS is applied to the raw data. A list of released traces in VTL zones is found from 

different filtering approaches. The adversary model developed by Sun et al. (2013) is then used to 

make privacy-based attacks on each of the released traces in the northbound direction of both 

original and reduced data. The comparison of results is given in Table 3.8. 

Figure 3.11 illustrates the summary of the privacy evaluation criteria P1 and P2 for different 

filtering approaches using the original and reduced datasets. Compared to the original data, the 

reduced data after applying SAS shows better performance in terms of privacy protection as both 

P1 and P2 has lower values for the reduced data in most cases. It means the SAS technique can 

not only be applied to the baseline data but also can be combined with privacy-based filtering 

approaches to further improve its privacy protection. The original data outperforms the reduced 

data only in cases of individual probability-based models where the individual tracking probability 

is smaller than 0.8.  

Notice that enhancing privacy protection sometimes may degrade the data quality for certain 

applications, as discussed in detail in Sun et al. (2013). This also applies to the reduced dataset 

after applying SAS, in a way similar to those shown in Sun et al. (2013). The details are omitted 

here for brevity.  
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Table 3.8. Privacy performance of the reduced Data vs. baseline Data. 

Filtering 

approaches  
Data type 

No. of 

released 

traces 

(both 

zones) 

No. of 

released 

traces -

Upstrea

m 

No. of 

released 

traces -

Downstr

eam 

No. of 

infere

nces 

No. of 

correct 

inferenc

es 

Percenta

ge of 

tracked 

traces 

(P1) 

Percenta

ge of 

Correct 

inference

s (P2) 

Baseline 
Original 131 138 134 137 99 75.57% 72.26% 

Reduced 130 137 133 135 73 56.15% 54.07% 

90% random 

sampling 

Original 118 132 126 131 92 77.97% 70.23% 

Reduced 118 132 126 129 69 58.47% 53.49% 

80% random 

sampling 

Original 93 118 112 116 74 79.57% 63.79% 

Reduced 93 118 112 114 55 59.14% 48.25% 

70% random 

sampling 

Original 72 104 97 103 60 83.33% 58.25% 

Reduced 72 104 97 102 46 63.89% 45.10% 

60% random 

sampling 

Original 56 91 84 91 47 83.93% 51.65% 

Reduced 56 91 84 89 42 75.00% 47.19% 

50% random 

sampling 

Original 40 74 70 68 33 82.50% 48.53% 

Reduced 40 74 70 63 29 72.50% 46.03% 

0.95 entropy 
Original 64 112 88 103 49 76.56% 47.57% 

Reduced 64 112 88 94 36 56.25% 38.30% 

1.50 entropy 
Original 32 92 68 84 28 87.50% 33.33% 

Reduced 32 92 68 68 18 56.25% 26.47% 

2.00 entropy 
Original 10 59 71 51 8 80.00% 15.69% 

Reduced 10 59 71 41 7 70.00% 17.07% 

2.50 entropy 
Original 4 34 85 26 3 75.00% 11.54% 

Reduced 4 34 85 25 3 75.00% 12.00% 

0.80 individual 

probability 

Original 59 119 80 105 48 81.36% 45.71% 

Reduced 59 119 80 95 34 57.63% 35.79% 

0.50 individual 

probability 

Original 31 105 66 89 25 80.65% 28.09% 

Reduced 31 105 66 77 24 77.42% 31.17% 

0.20 individual 

probability 

Original 9 61 67 43 6 66.67% 13.95% 

Reduced 9 61 67 37 7 77.78% 18.92% 

0.10 individual 

probability 

Original 4 42 50 26 2 50.00% 7.69% 

Reduced 4 42 50 25 3 75.00% 12.00% 
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Figure 3.11. Comparison of privacy performance. 
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 THE SELF-ADAPTIVE ONLINE TRAJECTORY 

SAMPLING (SAOTS) METHOD 

 OVERVIEW OF SAOTS ALGORITHM 

A major limitation of SAS is that it is unable to run online or near real-time. In the case of 

SAS, the entire trajectory data is assumed to be collected first and then used to find the resampling 

strategy. By design, it is a batch processing method, which is suitable for post-processing 

applications that can tolerate large latency.  To improve the proposed SAS method, the target is 

for near real-time (i.e., “online”) applications that require minimum latency to receive the data. 

For example, a mobile device is sending trajectory data to a central server; the server is using the 

data for (near) real-time decisions, such as volume or speed estimation for ramp metering control 

or signal timing control. For those online applications, the server cannot wait until the entire 

vehicle trajectory is finished. Therefore, the data compression algorithm has to be online to 

perform data compression and then send the compressed data (to minimize data transmission) as 

quickly as possible to the server for such decisions. Moreover, the Hidden Markov Model (HMM) 

used for VFS identification relies on manually classified (labeled) training data. Labeling 

trajectory segments manually is a time-consuming process which also depends heavily on human 

judgment. As a result, developing separate custom models for different roadway condition and 

traffic network using a large amount of manually labeled trajectory segments would demand a 

considerable effort. 

This section presents a self-adaptive online trajectory sampling (SAOTS) method for vehicle 

trajectory resampling and reduction. First, an online trajectory segmentation method based on the 

estimated VFS is presented. The next section explores the spectral domain properties using a 
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trajectory database that includes different types of trajectory segments. A spectral-domain property 

called critical frequency is introduced that reflects the nature of speed variations experienced by 

an individual vehicle. It was seen that this property could be utilized to determine the proper 

resampling frequency. Finally, SAOTS applies the critical frequency of each segment to sample 

the data records in that segment. As opposed to fixed sampling schemes, the sampling strategy 

proposed here is adaptive to the VFS. Results show that resampling the trajectory segments based 

on the critical frequencies can vastly reduce the size of the GPS data while conserving most of the 

useful information. 

SAOTS has three-fold benefits over SAS: (i) instead of using HMM that requires sizeable 

training data, SAOTS applies a semi-supervised HMM method that can significantly reduce the 

size of the training data; (ii) instead of some fixed sampling rules, SAOTS uses the underlying 

spectral-domain property of a trajectory segment to automatically determine a proper sampling 

interval, and (iii) unlike SAS, SAOTS is designed to operate online, and thus able to transmit 

trajectory data points to the central server near real-time. Compared with existing trajectory 

compression methods, SAOTS is designed to integrate traffic knowledge, in particular, VFS to 

segment and sample trajectories which can significantly improve its performances. The 

implementation of online trajectory compression algorithms including SAOTS requires local 

computation and storage capability, which certainly represents an engineering trade-off with the 

amount of data transmitted. However, with the high specifications (computational power and 

storage capabilities) of mobile devices these days, implementing such an online algorithm on the 

client side should not create any major issues.  
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 ONLINE TRAJECTORY SEGMENTATION BASED ON ESTIMATED VFS 

A trajectory segment is defined as a portion of the trajectory, where the vehicle undergoes a 

specific type of motion (Siddique and Ban, 2018). Each segment (and its constituent data points) 

is labeled with a vehicle flow state (VFS) to indicate the type of motion. Unlike the batch method 

in Siddique and Ban (2018), for online trajectory sampling, we cannot wait until the entire vehicle 

trajectory information is collected to start segmentation. Instead, a segmentation buffer is defined 

to receive trajectory data and perform the segmentation almost instantly. As shown in Figure 4.1, 

the segmentation buffer essentially defines the maximum length of a segment (in terms of its time 

duration). The segmentation will be done (and a trajectory segment identified) when either the 

segmentation buffer is reached or the HMM identified a different VFS in the new trajectory point. 

In either case, a trajectory segment is identified; the sampling algorithm will then run on the 

segment (see the flowchart in Figure 4.3) and the reduced data will be transferred from the client-

side (e.g., a mobile device) to the central server. Thus, the segmentation buffer also represents the 

maximum latency of the SAOTS. 

As shown in Figure 4.1, there are clear tradeoffs for the length of the segmentation buffer. 

Longer buffers will always lead to better segmentation, which will also bring larger latency; shorter 

buffers mean smaller latency, which however may result in inaccurate segmentation or fragmented 

segments (i.e., one long “stopped” segment may be identified as two short “stopped” segments). 

Figure 5.4 (a) in Section 5.5 shows that around 98% of the segments observed in a Didi dataset are 

shorter than 100 seconds and therefore in this study, the length of the segmentation buffer is set as 

100 seconds. However, it needs to be clarified that it is just an upper bound of the actual length of 

a segment and thus is more like a constraint to check the excessive latency of the online resampling 

algorithm. Therefore, it does not need to be super accurate and some rough estimate can work 
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satisfactorily. The actual length of a segment is determined by the SAOTS algorithm and often 

shorter than this segmentation buffer. The latency of the resampling is decided by the length of a 

segment (not this buffer). 

 SAMPLING BASED ON SPECTRAL DOMAIN ANALYSIS 

Probably due to its inherent spatiotemporal nature, in the field of traffic data analysis, spectral 

domain-based methods have received much less attention compared with time domain-based 

methods. Li et al. (2010) proposed a data analysis framework to extract traffic oscillation attributes 

such as the period and magnitude using spectral-domain signal processing techniques. The 

approach is effective in unveiling oscillation properties from noisy raw data collected using loop 

detectors. More recently, Zhao et al. (2014) proposed a spectral envelope method to analyze traffic 

oscillations using simulation and detector data. They found that spectral envelopes can reveal not 

only the salient frequencies of periodic oscillations of traffic flow but also the relative strength of 

Figure 4.1. Illustration of Segmentation Buffer. 
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these oscillations at different locations. This section presents a spectral-domain analysis method 

to determine the sampling frequency of a trajectory segment identified in Section 5.2.  

Any signal whose amplitude is a function of time has a corresponding frequency spectrum. 

When the signal is viewed from the frequency (or spectral) domain, certain aspects of the signal 

or the underlying processes producing it can be revealed. In some cases, the frequency spectrum 

may include a distinct peak corresponding to a sine wave component. However, for real-world 

signals, such as the trajectory of a moving vehicle studied in this paper, there may be multiple 

peaks indicating a signal that is not simply sinusoidal. Energy spectral density (𝐸𝑆𝐷) describes 

how the energy of a signal or a time series is distributed in the spectral domain. In other words, it 

shows at which frequencies time-domain variations are strong and at which frequencies time-

domain variations are weak (Oppenheim et al., 1978).  Let’s assume 𝑥(𝑡) denotes a signal as a 

function of time, where 𝑡 is the (continuous) time. Then, the 𝐸𝑆𝐷 of signal 𝑥(𝑡) is defined as: 

        𝐸𝑆𝐷 = ∫ |𝑥(𝑡)|2𝑑𝑡                                                                                                                      (4.1) 
∞

−∞

 

Now, for the purpose of this study, let’s focus on a segment of a vehicle trajectory. The 

spectral domain analysis focuses on the instantaneous speeds of the vehicle. In this case, the signal 

is discrete (e.g., one data point per second) and the duration of the segment is finite (e.g., 5 

minutes), leading to a finite number of data points (e.g., 300). Denote 𝑓 the sampling frequency of 

the signal, then according to Parseval’s theorem (Stein, 2000), the 𝐸𝑆𝐷 of a discrete signal 𝑥(𝑛) 

can be defined as (𝑛 here denotes the discrete-time instant): 

       𝐸𝑆𝐷 = |𝑥̂(𝑓)|2                                                                                                                                    (4.2) 
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where 𝑥̂(𝑓) is the discrete Fourier transform (DFT) of 𝑥(𝑛). DFT converts a finite sequence 

of equally-spaced samples of a signal into a same-length sequence of an equally spaced complex-

valued function of frequency. The DFT is, therefore, a spectral domain representation of the 

original input sequence (signal). In this case, the DFT transforms a trajectory segment with 𝑁 

sample points {𝑥(𝑛): =  𝑥(0), 𝑥(1), 𝑥(2) … . . 𝑥(𝑁 − 1)}, into a sequence of complex numbers, 

which is defined by: 

     𝑥̂(𝑓) =  ∑ 𝑥(𝑛)𝑒−2𝜋𝑖𝑓𝑛/𝑁

𝑁−1

𝑛=0

                                                                                                              (4.3) 

The DFT of the signal (i.e., the speeds of a vehicle trajectory segment in this study) was 

performed using an algorithm called the Fast Fourier Transform (FFT). Because the FFT of a real 

signal is symmetric, the energy at a positive frequency is the same as the energy at the 

corresponding negative frequency. In this study, therefore, we only look at the positive side of the 

spectrum. Once the single-sided 𝐸𝑆𝐷 is plotted using Equations (4.2) and (4.3) above, the area 

under the 𝐸𝑆𝐷 curve represents the total energy of the signal according to Parseval’s theorem 

(Oppenheim et al., 1978). The 𝐸𝑆𝐷 array values are proportional to the amplitude squared of each 

frequency component making up the time-domain signal. As a result, the shape of the 𝐸𝑆𝐷 shows 

the nature of the dominant frequencies; see Figure 4.6 (b) below for an example. In theory, a signal 

normally contains all frequencies from −∞ to +∞. In practice, considering only a small fraction 

of the frequencies and ignoring very high frequencies of the signal is probably sufficient to 

conserve the majority of the signal. The energy of a signal up to a certain frequency, i.e., the area 

under the 𝐸𝑆𝐷 curve of the signal, can be used as a metric to measure how good the original signal 

can be conserved if we only consider the signal up to that frequency. 
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In case of the speed profile of a vehicle trajectory segment, the 𝐸𝑆𝐷 usually reveals that the 

majority of the ‘peaks’ occur on smaller frequencies. This implies that considering up to a small 

portion of the frequencies may be sufficient to conserve most of the energy in that signal, which 

can be used to recover the majority of the signal. This study defines the critical frequency of a 

signal that corresponds to a certain percentage of the total energy (for example, 90%) of the signal. 

Using this frequency, we can find the sampling interval to resample the signal (i.e., the trajectory 

segment). The resampled signal often contains much fewer data points than the original signal, 

thus significantly reducing the data size, while at the same time ensuring that most of the energy 

of the signal is retained. The estimated trajectory segment can be then reconstructed using piece-

wise linear interpolations. To evaluate how close the estimated trajectory segment is to the original 

trajectory segment, the mean absolute percentage error (𝑀𝐴𝑃𝐸) of the reconstructed trajectory 

segment is considered. The 𝑀𝐴𝑃𝐸 is calculated using the following equation: 

        𝑀𝐴𝑃𝐸 =  
1

𝑁
∑ |

𝑥̅𝑖 − 𝑥𝑖
∗

𝑥̅𝑖
|

𝑁

𝑖=1
 × 100%                                                                                      (4.4) 

Where, 𝑥̅𝑖 is the actual value and 𝑥𝑖
∗ is the estimated value of the speeds in the trajectory 

segment. A demonstration of the method is illustrated in Figure 4.2. Figure 4.2 (a) shows the speed 

profile of a vehicle trajectory segment in the time domain. The length of the segment is 144 

seconds. The data contain location and speed information for every second; thus, the original 

sampling frequency of the ‘signal’ is 1 Hz. Figure 4.2 (b) shows the 𝐸𝑆𝐷 of the signal in Figure 

5.2 (a). The y-axis of the ESD plot represents the energy of the frequency. We can see that smaller 

frequencies often have higher energies, which implies that the majority of the energy of the 

spectrum can be covered if only a small portion of the frequencies is considered. Figure 4.2 (c) 

illustrates the increase in the cumulative energy conserved by increasing frequencies. In this case, 
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considering only up to 0.2 Hz can yield 90% energy of the signal. This frequency translates into a 

sampling frequency of 0.4 Hz according to Nyquist–Shannon sampling theorem (Oppenheim, 

1999), i.e., a sampling interval of about 3 seconds. The trajectory segment is then resampled by 

considering 1 data point every 3 seconds, as shown in Figure 4.2 (d). The piece-wise linear 

interpolation of speeds provides a 𝑀𝐴𝑃𝐸 of nearly 6% for the resampled trajectory. This 

demonstrates that using only 33% of original data records, a trajectory segment can be resampled 

with satisfactory results. In this study, once a trajectory segment is identified the above spectral 

analysis of the segment is performed in order to determine the proper resampling interval of the 

segment. This is the sampling step of the trajectory compression method proposed in this study. 

 

Figure 4.2. Demonstration of frequency spectrum analysis results in a trajectory 
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 SAOTS ALGORITHM 

Integrating the online segmentation method in Section 4.2 with the spectral domain analysis 

method in Section 4.3 leads to a Self-Adaptive Online Trajectory Sampling (SAOTS) algorithm. 

Figure 4.3 shows the flowchart of the algorithm. First, there are two parameters that need to be set 

up before the SAOTS algorithm is initiated. They are the initial buffer and the segmentation buffer. 

SAOTS initiates with a small initial buffer. The initial buffer size is chosen to create several typical 

segments, which is chosen as 60 seconds in this paper. This buffer is used to initiate the incoming 

data, to accommodate the occasional ‘cold start’ of GPS sensors, and to warm up the HMM 

classifier to classify individual data records. The second parameter, the segmentation buffer, is 

used to ensure that the latency of the online application is not too long, as discussed in Section 4.2. 

Since the resampling happens after a segment is identified, the length of the segment (in time) also 

represents the latency of the algorithm, i.e., how soon the data from a trajectory segment can be 

released after the first data point of the segment is received. Limiting the segmentation buffer 

length helps control the latency of the algorithm in real-time applications. In this study, the 

segmentation buffer length was chosen as 100 seconds as detailed in Section 4.2. 
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Figure 4.3. Flowchart of SAOTS algorithm. 
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Once the algorithm is initialized, it waits until the initial buffer is filled. The individual data 

points inside this buffer are then classified using the HMM classifier. This classifier uses the 

instantaneous speeds of the data as the input to label each incoming data point. If the label of a 

new data record is different from the previous record, this implies the start of a new segment. The 

start of a new segment is also triggered when the segment reaches the segmentation buffer length. 

Once any of these two criteria are satisfied, a segment is identified with a given VFS. If the VFS 

of the segment is identified as “Stopped”, then only the first and the last data records are sampled. 

For other types of segments, SAOTS then conducts spectral domain analysis for the identified 

segment as discussed in section 3.8 to find the critical frequency of the segment. This critical 

frequency is used to find the sampling interval of the data records of the segment. The same process 

repeats itself until no trajectory data point is received, as shown in Figure 4.3. The latency of the 

algorithm varies depending on the length of the segment that is just identified. The average latency 

among all segments of the trajectory can be used as the overall latency of the algorithm.  

The proposed SAOTS method relies only on the collected trajectory data, for which road 

network information is not needed. As a result, it can deal with vehicle trajectories from either 

known or unknown road networks. 
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 EXPLORING SPECTRAL DOMAIN PROPERTIES 

This section explores the spectral domain properties using a dataset of 58 different vehicle 

trajectories. This trajectory dataset was recorded from vehicles in Albany, New York, and Seattle, 

Washington, covering various traffic conditions. The original sampling interval of these 

trajectories is 1 second. To investigate the spectral domain properties, the trajectories were broken 

into segments based on the VFS of the individual data points. A total of 3,285 segments are 

identified after the segmentation process. The distributions of the segment lengths and segment 

types are demonstrated in Figure 4.4. The length of the segments varies from 2 seconds to 995 

seconds. However, the majority (around 98%) of the segments are less than 100 seconds long (See 

Figure 4.4 (a)). The distributions of four types of segments are almost the same as seen in Figure 

4.4 (b). The distribution of the number of data points in different types of segments is also very 

similar, which is omitted here. 

Figure 4.5 illustrates the results of the analysis of MAPEs and sampling intervals. The 𝑀𝐴𝑃𝐸𝑠 

for different sampling intervals and segment lengths are plotted in Figure 4.5 (a).  It shows that, 

considering high energy conservation results in lower 𝑀𝐴𝑃𝐸. This is quite expected, as conserving 

Figure 4.4. Distribution of segment length and type 
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higher energy translates into a smaller sampling interval (see Figure 4.5 (b)). Longer segments 

seem to exhibit smaller 𝑀𝐴𝑃𝐸𝑠. The 𝑀𝐴𝑃𝐸s vary most for the ‘stopped’ segments (see Figure 

4.5 (c)). It is also observed that ‘stopped’ segments often tend to retain the original sampling rate 

of 1 second (see Figure 4.5 (d)) based on the spectral domain analysis. This is quite expected, as 

these segments are mostly composed of zero speed values, and the sampling based on spectral-

domain analysis seems to struggle due to near-zero energy of the signal. The ‘free flow’ segments 

exhibit lower MAPEs when compared to other types of segments. This means that in the trajectory 

segments where the vehicle moves in a consistent speed, the reconstructed trajectory yields more 

accurate results compared to other types of segments. 

  

Figure 4.5. Results of analyses considering different energy consideration and segment type. 
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 Comparing SAS and SAOTS with Other Trajectory 

Compression Algorithms 

This chapter presents the results of different numerical analyses that were performed to 

compare SAS and SAOTS with other existing trajectory compression algorithms. Two different 

trajectory datasets were used for these studies, a small, ‘field’ dataset, and a large dataset. The field 

dataset contains 58 different vehicle trajectories (supplemented by a 111-trajectory dataset for 

queue length estimation) that were recorded from vehicles in Albany, New York, and Seattle, 

Washington, covering various traffic conditions in an urban setting. The original sampling interval 

of these trajectories is 1 second. On the other hand, the large dataset is from a Chinese ridesourcing 

company, Didi Chuxing (https://outreach.didichuxing.com/research/opendata/en/). This dataset 

contains approximately 60 million data points, which were collected from the City of Chengdu 

and the City of Xi’An in China. The sampling interval of the data points in this dataset varied 

between 1 to 10 seconds.  

This chapter provides an empirical comparison of five trajectory compression algorithms. 

They include SAS and SAOTS proposed in this study and three other trajectory compression 

algorithms: two online algorithms and one batch processing algorithms. The other three algorithms 

are listed below.  

• Bottom-Up (BU): Starting from the finest possible approximation (considering every two 

points as a segment), segments are merged until the stopping criteria are met.  This study sets 

a maximum segment error = 0.0003 as the stopping criteria. 

• Sliding Window (SW): Using this algorithm, a trajectory segment is grown until it exceeds 

some error bound This study sets a maximum segment error = 0.0003 as the error bound. 

https://outreach.didichuxing.com/research/opendata/en/
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• Sliding Window and Bottom-Up (SWAB): The SWAB algorithm keeps a small buffer of data 

points. Bottom-Up is first applied to data in the buffer and the leftmost segment is reported. 

The data corresponding to the reported segment is removed from the buffer and more data 

points are read in. The number of data points to read in depends on the structure of the incoming 

data, which is performed by the Sliding Windows algorithm. These points are incorporated 

into the buffer and Bottom-Up is applied again. The process of applying Bottom-Up to the 

buffer, reporting the leftmost segment, and reading in the next data subsequence by applying 

Sliding Windows is repeated as data arrive in real-time. This research uses an initial buffer of 

100 data points. Other parameters are kept the same as those in Keogh et al. (2001). 

A “spectral resampling” batch compression method was also tried that performs the spectral 

analysis on the entire trajectory (i.e., a batch algorithm) to determine its critical frequency and then 

apply the frequency to resampling the trajectory. It turns out that such a method does not perform 

well when compared with the other batch methods (SAS and BU). Therefore, the detailed results 

of this spectral resampling method are not included in this dissertation. The field dataset is used 

for all the comparison except queue length estimation. To measure the error in queue length 

estimation, signal timing information is needed in addition to the trajectory data. The field dataset 

described in the previous section does not contain any signal timing information, and thus it could 

not be used for queue estimation.  A separate trajectory dataset with relevant signal timing 

information is then used for comparing the performance of the trajectory compression algorithms 

for queue length estimation. Furthermore, the linear interpolation method is used to reconstruct the 

resampled trajectory. Fitting a polynomial to recreate the vehicle trajectories may yield better 

results in many cases than the piecewise linear approximation. However, in this case, different 

orders of polynomials might be needed to recreate different segments accurately. This may create 
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unnecessary complexity and computational burden to reproduce the trajectory, which can be an 

issue especially for online algorithms studied in this paper. On the other hand, the assumption of 

linearity may have an inherent error, but it is still the most basic and straight forward way to 

reconstruct the trajectory with fewer data points (especially for online algorithms), and thus is 

widely used by many trajectory compression algorithms (Shatkay, 1995; Park and Lee,1999; 

Keogh et al.,2001). Table 5.1 provides a qualitative comparison among these compression 

algorithms. 

Table 5.1. Comparison of Trajectory Compression (TC) Algorithms. 

TC Algorithm 
Online 

Algorithm 
VFS  Controlling Parameters 

SAS No Yes The sampling interval for different types of trajectory segment 

SAOTS Yes Yes Percent energy conserved 

Sliding Window Yes No Maximum Spatial error in a segment 

Bottom Up No No Maximum Spatial error in a segment/ Number of segments 

SWAB Yes No Maximum Spatial error in a segment/ Number of segments 

 COMPARISON USING FIELD DATA 

Several evaluation criteria were used to compare these algorithms, which are described below. 

This section also discusses the performance of each trajectory compression algorithm using the 

filed dataset under these evaluation criteria, based on the results in Table 5.2. 

• Percentage Data Reduction (PDR): This is the ratio of the number of data records reduced 

in the resampled trajectory and the number of data records in the original trajectory. A high 

PDR means a high percentage of data reduction and is thus preferred. SAOTS has the 
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highest average PDR of 72.29% among all three online algorithms (actually among all five 

algorithms tested here) for the trajectories used in the numerical experiments here.  

• Spatial Error: This is the summation of the perpendicular Euclidean distances between the 

Lat/Lon pairs of original data records and that of the resampled trajectory segment. Among 

the three online algorithms, SWAB has the lowest spatial error of 0.0002 degrees, and 

SAOTS exhibits the second-lowest Spatial Error of 0.0003 degrees.   

• 𝑀𝐴𝑃𝐸 of Speeds: The formula to calculate 𝑀𝐴𝑃𝐸 of speeds in a resampled trajectory is 

given in Equation (4.4). Generally, the batch algorithms have lower 𝑀𝐴𝑃𝐸s than online 

algorithms. We find that SAS provides the lowest 𝑀𝐴𝑃𝐸 (2.15%) for the resampled 

trajectories while compared with other trajectory compression algorithms. SAOTS has a 

MAPE of 4.3%, which is better than the 𝑀𝐴𝑃𝐸s of the two other online algorithms, the 

Sliding Window (6.49%) and SWAB (7.55%). 

• Latency: This evaluation criterion is crucial and only applicable to online algorithms. These 

algorithms need to create a buffer while making resampling decisions. Latency is defined 

here as how soon the data from a trajectory segment can be released after the first data 

point of the segment is received. This is also the time difference between the actual time 

of reading the first data record of the segment and the time of making the decision of how 

to form and resample the segment. A compression/segmentation algorithm with larger 

latency will result in a larger delay while processing the trajectory data, which is less 

desirable. In the case of SAOTS, the length of the segmentation buffer is the maximum 

latency of a trajectory segment. The actual latency is determined by the length of the 

trajectory segments, which is often smaller than the segmentation buffer. For all three 
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online algorithms, the computation time of the algorithm is very small compared to the 

segment length/segmentation buffer and thus not considered in the latency calculation. 

Figure 5.1 illustrates the latency distributions of the three online algorithms. From the 

distributions, it is evident that SAOTS has the highest number of data records sampled in 

very low latency, resulting in an average latency of about 29.73 seconds. Sliding Window 

has the lowest overall latency, with an average of 9.09 seconds. SWAB shows a wide range 

of latencies, which are almost uniformly distributed between 1 to 600 seconds, with an 

average latency of 290.72 seconds. 

• Error in queue length estimation: The reconstructed trajectories from all five trajectory 

compression algorithms were used for estimating queue lengths (in the number of vehicles) 

and queue locations (in feet) using the method proposed by Hao et al. (2015). For this 

particular comparison, this study used a dataset with 111 vehicle trajectories and related 

Figure 5.1. Latency distribution of online trajectory compression algorithms on field data. 
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signal timing information from a signalized intersection in Albany, New York. A detailed 

description of the test site and data can be found in Ban et al (2011). Note that both queue 

length and queue location are related to the maximum location of the back of the queue. 

Our objective here is to evaluate how the resampled data using these algorithms perform 

for traffic applications. Queue length estimation is just one of such applications and used 

here to illustrate the performance of the algorithms. There are three evaluation criteria for 

the queue length estimation application (Hao et al., 2015): 

o Mean Absolute Error (𝑀𝐴𝐸) of queue length Estimation (in number of vehicles) 

o Mean Absolute Error (𝑀𝐴𝐸) of queue location Estimation (in feet) 

o Success Rate (in percentage) 

Details of the evaluation criteria of queue estimation are given in Hao et al. (2015) and 

omitted here. We find that SAOTS (along with SAS and Sliding Window) excels in the 

Success Rate (81.82%) among all five algorithms. Compared with the other two online 

algorithms (Sliding Window and SWAB), SAOTS exhibits the lowest 𝑀𝐴𝐸 in both queue 

length and queue location estimation (5.05 vehicles and 46.088 ft respectively).  
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Table 5.2. Comparison of Trajectory Compression Algorithms using field data. 

 

It is clear from the results in Table 5.2 that the performances of the proposed SAOTS are 

either the best or the second-best among the three online algorithms. Furthermore, even for the 

criteria that SAOTS is the second-best (spatial error), the performances are somewhat close to the 

best performances. Arguably, the spatial error is the least important as long as the other 

performances such as speed MAPE, latency, and application-related performances are satisfactory. 

Therefore, the proposed SAOTS method is well balanced and considered as the best online 

algorithm among all evaluation criteria. The other two online algorithms suffer from degraded 

application performances (both the Sliding Window algorithm and the SWAB algorithm) and/or 

excessively long latency (the SWAB algorithm). 

When comparing SAOTS with the other two batch algorithms (SAS and Bottom-Up), we can 

see that the PDR of SAOTS is better, while the other performances of SAOTS are close to those 

of the two batch algorithms. This further confirms that SAOTS is a well-balanced algorithm which 

TC Algorithm PDR (%) 

Spatial 

Error 

(degree) 

𝑴𝑨𝑷𝑬 of  

Speed (%) 

Average 

Latency 

(s) 

Queue Length Estimation 

𝑴𝑨𝑬 of 

Queue 

Location (ft) 

𝑴𝑨𝑬 of 

Queue 

Length (veh) 

Success 

Rate 

SAS 58.94 0.0006 2.15 - 39.579 4.589 81.82% 

SAOTS 72.29 0.0003 4.3 29.73 46.088 5.047 81.82% 

Sliding Window 67.18 0.0008 6.49 9.09 67.374 7.316 81.82% 

Bottom Up 72.06 0.0.004 14.11 - 36.373 4.155 78.18% 

SWAB 67.46 0.0002 7.55 290.72 118.21 8.193 61.82% 
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can run in near real-time with reasonably good performances in data reduction, latency, speed 

error, and real-world applications. Moreover, the ability to identify VFS of the segments is an 

additional feature in SAOTS, which is not available in previous algorithms with an exception of 

SAS. Overall, even compared with batch trajectory compression algorithms, we can find that 

SAOTS achieves a fine balance among PDR, spatial accuracy, latency, and application 

performances. 

Figure 5.2 demonstrates a side by side comparison of resampling of a randomly selected 

vehicle trajectory using different trajectory compression algorithms. In this figure, the data points 

resampled using different trajectory compression algorithms are plotted with a distance offset. The 

Figure 5.2. A comparison of resampling using different trajectory compression 

algorithms. 
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original data points are plotted in black, whereas other colors indicate the same trajectory, but 

resampled using different compression algorithms.   

 PERFORMANCE OF SAS AND SAOTS ON DIDI DATASET 

This section presents the performance of SAS and SAOTS on Didi dataset and compares it 

with other trajectory compression algorithms. The dataset contains trajectories of Didi’s 

ridesourcing vehicles for the City of Xi’An in China for November 2017. Since the data size is 

huge, this study randomly selected vehicle trajectories from four days for analysis in this 

dissertation, representing about 15% of the total Didi dataset. The dataset used in this study 

contains nearly 60 million data point from about 0.25 million trips (trajectories). For this study, 

trajectories with a minimum of 100 data points were chosen to use, resulting in 0.21 million 

trajectories. Figure 5.3 (a) illustrates the distribution of the total number of data points in the 

trajectories used in our analysis.  Distance-wise, the length of each trajectory varies between 0.1 

miles to 9.07 miles (see figure 5.3 (b)). Notice that there is no fixed sampling interval for the Didi 

dataset. The sampling interval varies mostly between 1 to 10 seconds, with around 90% of data 

points sampled at an interval of 3 seconds. Furthermore, the raw Didi dataset does not have 

Figure 5.3. Distribution of number of data points and trajectory length in trajectories in Didi dataset. 
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instantaneous speed information. The change in location over each time step was used to estimate 

the speed. The estimation process is trivial and omitted here. 

 

Figure 5.4 (a) illustrates the distribution of different VFS segments estimated from the dataset. 

It is seen that around 43% of the segments are categorized as ‘stopped’, whereas 36% of the 

segments are classified as ‘free-flow’. The percentages of “acceleration” and “deceleration” 

segments are relatively small. The PDR after applying the resampling method ranges mainly from 

50% to 70% (see figure 5.4 (b)).  

The same evaluation criteria as defined in section 5.1 is used to compare the trajectory 

compression algorithms, with the exception of queue length estimation errors. The reason for 

excluding the queue length estimation is the lack of signal timing information in the Didi dataset 

which is essential for such analysis (Hao et al., 2015). However, using Didi dataset, this study 

tested the performance of directly using the spectral analysis to select a resampling rate of the 

whole trajectory. It is important to note here that such spectral resampling method skips the 

segmentation part of SAOTS and focuses on the entire trajectory to find its critical frequency. This 

critical frequency is then used to find the resampling rate for the whole trajectory. In this way, the 

Figure 5.4. Distribution of segment types and PDR in Didi dataset. 
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spectral resampling can be considered as a batch compression method. The performance of 

SAOTS with respect to four other trajectory compression methods and spectral resampling is 

summarized in Table 5.3 and are discussed below. Note that for the three online algorithms 

(SAOTS, Sliding Window, and SWAB), similar as in Table 5.2, best performances are highlighted 

in bold text and the second-best performances are highlighted using italic text. 

• Percentage Data Reduction (PDR): SAOTS has an average PDR of 64.66% for the 

trajectories in the Didi dataset, next to Sliding Window that has the highest PDR of around 

91.25%. The distribution of PDR among different trajectories by applying the SAOTS 

algorithm is shown in figure 5.4 (b).  

• Spatial Error: Among the five algorithms, SAS has the lowest spatial error of 0.0018. 

SAOTS performs the best among the three online algorithms with a spatial error of 0.0033 

• 𝑀𝐴𝑃𝐸 of Speeds: We find that SAS provides the lowest 𝑀𝐴𝑃𝐸 (25.23%) for the resampled 

trajectories while compared with other trajectory compression algorithms. SAOTS has a 

MAPE of 30.91%. Similar to the Spatial Error, this is the best among all three online 

algorithms. In general, the MAPE of speeds is higher in the Didi dataset compared to the 

field dataset in Section 5.1. This is probably due to the fact that the sampling interval in 

Didi data is higher than that of the field data, and the instantaneous speed is estimated 

indirectly from the change in location over time. 

• Latency: Figure 5.5 illustrates the latency distributions of three online algorithms when 

processing the Didi dataset. Similar to the field data, SAOTS has the highest number of 

data records sampled in a very low latency (1 second), resulting in an average latency of 

14.12 seconds as shown in Table 5.3. Sliding Window has the second-lowest overall 
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latency, with an average of 20.92 seconds. SWAB showed a wide range of latencies, with 

an average latency of 86.52 seconds. In general, for all three online trajectory compression 

algorithms, the average latencies are lower in case of the Didi dataset when compared to 

the field data in the previous section. This is likely because in general, the trajectories in 

the Didi dataset have fewer data points than those in the field dataset. 

It was found that the spectral resampling yields decent performance, especially when 

compared with other batch trajectory compression algorithms. In fact, with a PDR of 69.16% and 

Spatial Error of 0.0019 degrees, the spectral resampling stands as second-best compression method 

among all trajectory compression methods considered in this study.  Overall, we observed higher 

values for MAPE of speed while testing the algorithms using the Didi dataset. This is probably 

because the instantaneous speeds were not directly provided in the dataset; rather it was calculated 

by the change in location over time. This may result in inaccurate estimation of instantaneous 

Figure 5.5. Latency distribution of online trajectory compression algorithms on Didi data 
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speeds, which may cause higher speed errors for the Didi dataset. The 127% MAPE was observed 

using the Sliding Window method, which reduces almost 91% of the original data points. This 

extremely high data reduction has most probably caused such high MAPEs.  For the small dataset 

for which speeds are provided directly, as shown in Table 5.2, the speed error ranges from about 

3% - 19% which is more reasonable. 

Table 5.3. Comparison of Trajectory Compression Algorithms using field data. 

  

TC Algorithm PDR (%) 
Spatial Error 

(degree) 
𝑴𝑨𝑷𝑬 Of Speed (%) Average Latency (s) 

SAS 51.87 0.0018 25.23 - 

Spectral Resampling 69.16 0.0019 39.70 - 

SAOTS 64..66 0.0033 30.91 14.12 

Sliding Window 91.25 0.0091 127.56 20.92 

Bottom 58.41 0.0035 50.46 - 

SWAB 61.13 0.0047 73.30 86.52 
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 SEMI SUPERVISED LEARNING METHOD FOR VFS 

ESTIMATION 

 SEMI-SUPERVISED LEARNING METHOD 

This section explains a method to improve the HMM classifier using a semi-supervised 

approach, where unlabeled trajectories are added to the labeled training data. Using unlabeled data 

to help supervised learning has become an increasingly attractive methodology and proven to be 

effective in many applications such as text categorization and gene expression analysis where 

expert knowledge and costly biological experiments are often required to manually label the data. 

This situation is also common in GPS based vehicle trajectory data, where the huge amount of 

unlabeled trajectory contradicts the relatively few numbers of trajectories with experimentally 

estimated VFS. The intent of this study is to estimate the VFS of vehicle trajectory data with 

minimum human labeling efforts. The semi-supervised learning method used in this study is 

similar to those in Zhong (2005). Let’s denote the labeled data by (𝑥𝑙, 𝑦𝑙)  and the unlabeled data 

by (𝑥𝑢). The following steps can formulate the semi-supervised learning algorithm: 

1. Use the completely labeled data (𝑥𝑙 , 𝑦𝑙)  to train an initial model (𝜃) 

2. Use 𝜃 to predict the labels (𝑦∗) of the unlabeled data 

3. Use the newly labeled data (𝑥𝑢, 𝑦∗)along with the completely labeled ones to train a new 

model (𝜃∗) 

The above-mentioned algorithm is also known as the self-training approach in some literature 

(Tamposis et al., 2018). Self-training is a wrapper method, which means in general, any classifier 

can be trained using this method. Since the classifier uses its own predictions to teach itself, it is 
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possible that a classification mistake can reinforce itself. A possible solution to this is by discarding 

the unlabeled sequences if the prediction confidence drops below a threshold. This solution is more 

restrictive since the optimal threshold needs to be identified but has the additional advantage of 

fewer computations since only a fraction of the unlabeled data is included in the training phase. 

However, this solution is not applicable in this study, as the HMM classifier does not provide a 

prediction confidence interval. Instead, a simple but crude method of including all predictions from 

step 2 is implemented in the training process. 

Traditionally, the parameters of an HMM is calibrated using one sequence. In this case, the 

data consists of multiple individual vehicle trajectories. Each trajectory can be considered as a 

sequence in HMM. In order to accommodate multiple sequences, the instantaneous speeds of 

multiple trajectories are concatenated into one long sequence of data points. Before the 

concatenation, the trajectories were trimmed at stopped segments to prevent the abrupt change in 

the speed profile of the trajectory.  

 NUMERICAL STUDIES 

This section evaluates the performance of the HMM classifier trained using semi-supervised 

learning method. Then two case studies are presented to better understand the implications of this 

method in VFS estimation. The dataset used in this study is from a Chinese ridesourcing company, 

Didi Chuxing (https://outreach.didichuxing.com/research/opendata/en/). The dataset contains 758 

vehicle trajectories of Didi’s ridesourcing vehicles from the City of Chengdu in China for 

November 2017. From these trajectories, 54 trajectories were randomly selected, and the VFS 

segments in these trajectories were manually labeled using human judgment. Table 6.1 illustrates 
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the number of trajectories, the number of VFS segments and the number of data points in the 

labeled and unlabeled data used in this study. 

Table 6.1. Datasets used to train the semi-supervised HMM 

 Number of trajectories Number of VFS Segments Number of data points 

Labeled data 54 769 10,417 

Unlabeled data 704 10,911 165,215 

 

The accuracy of the regular and semi-supervised HMM classifiers were compared for 

different sizes of training data. In order to train the regular HMM classifier, the number of labeled 

trajectories was varied from 1 to 50 with an increment of 10. For the semi-supervised HMM 

classifier, just 1 labeled trajectory was used, and an increasing number of unlabeled trajectories 

were gradually incorporated.  Figure 6.1 illustrates the change in the accuracy of the classifiers 

with the increase in training data. It was found that, when compared to human judgment, the best 

classifier in terms of accuracy (90.5%) was obtained when 31 labeled trajectories were used to 

train the HMM parameters. The performance of semi-supervised HMM classifier increased with 

the increase of unlabeled data. It was found that the best performance was found when all 700 

unlabeled trajectories were used. From this experiment, it can be concluded that the semi-

supervised learning method can achieve a very similar accuracy using a very small amount of 

labeled data when compared to regular HMM which relies on a large number of labeled data.  
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In order to better understand the difference in nature of these two classifiers, this study looked 

at their predictions on individual trajectories, side by side. It was found that, when compared to 

the regular HMM classifier, the semi-supervised HMM classifier had an accuracy of 96.3%. Table 

6.2 illustrates the confusion matrix. The prediction results of two classifiers are demonstrated using 

a sample trajectory in figure 6.2. It can be seen that, in general, the models developed using semi-

supervised method seem to be more “precise” in VFS estimation than the regular model. The semi-

supervised model tends to distinguish smaller acceleration and deceleration segments where the 

regular HMM model considers them as one long segment. 

 

Figure 6.1. Accuracy vs size of training data for regular and semi supervised HMMs 
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Table 6.2. Confusion Matrix for Semi-Supervised HMM. 

 

Predicted by semi-supervised HMM 

Stopped Free Flow Acceleration Deceleration 

Predicted 

by 

regular 

HMM 

Stopped 287 0 5 2 

Free Flow 1 277 11 35 

Acceleration 2 0 36 2 

Deceleration 4 6 0 288 

 

  

VFS predicted by regular HMM 

VFS predicted by semi supervised HMM 

Figure 6.2. Comparison of VFS estimation results by the regular HMM and the semi 

supervised HMM 
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 CONCLUSION  

This research develops two self-adaptive sampling methods for vehicle trajectory data 

compression. The methods target mobile sensors that can provide highly accurate locational 

information (such as those equipped with GPS devices) of vehicles. The proposed methods are 

applied to the detailed trajectory of an individual vehicle separately and independently. Both 

methods discussed in this dissertation utilize the VFS of the sensor/vehicle (e.g., free-flowing, 

accelerating, etc.) from its trajectory data, and uses the estimated VFS to adjust the sampling rate 

of the trajectory accordingly. It is found that using the proposed data compression strategies, the 

total amount of data can be reduced by about 50%-70% for the datasets tested in this study while 

keeping the most critical data points. This is helpful, as the reduced data can yield much less 

communication cost, energy consumption, and data storage. It is also seen that the reduced data 

can not only be used satisfactorily for traffic modeling applications, such as queue location and 

queue length estimation but also be effective in protecting user’s privacy. 

The practical applications of this dissertation research are summarized as follows: 

• When integrated into the client-side devices (such as smartphones and CAVs), reduction of 

GPS based location data using the proposed methods will help reduce data size, which will be 

tremendously helpful in reducing the storage and communication cost in the client side. With 

the proposed resampling methods integrated, smartphone applications and location-based 

services like Google Maps, Yelp and Gas Buddy will benefit from reduced storage and 

communication cost at the client side. The reduced cost in the data collection process will 

eventually promote the crowdsourcing of mobile data. 
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• The proposed method of identifying VFS and ‘stop and go’ can be used to better understand 

and explain the intrinsic features of a probe vehicle’s motion. Such additional information 

extracted from multiple individual vehicle trajectories may be combined to achieve a clearer 

picture on the performance of underlying road network and its bottlenecks. 

• At the server side, vehicle trajectory data that have already been collected can be compressed 

using the proposed SAS strategy to free-up storage spaces. Without severely compromising 

the performance, the resampled data by the proposed method can be used in various 

transportation applications. One of such applications is modeling the human mobility pattern 

and origin-destination (OD) estimation. In recent years, OD estimation using GPS data is 

gaining traction among researchers. The compressed data using methods proposed in this 

dissertation can be used in this case since the origin and the destination of the trajectories are 

preserved. For transportation applications where detailed and fine-grained trajectory 

information is desired (such as queue length estimation), the compressed data using proposed 

methods still provides reasonable performance as discussed in section 3.6. 

• Last but not least, apart from the vehicle trajectory data, the proposed methods can also be 

applied to other types of location data, such as fitness tracking. Fitness tracking devices like 

Fitbit collects data from numerous sensors and then sends this information to the cloud server 

for processing. The proposed methods for VFS estimation and resampling may be modified 

for this use case. 

With the rapid technology advancement and data explosion in transportation and related 

fields, how to properly compress (i.e., collect and resample) vehicle trajectory data presents a 

critical challenge. This dissertation presents some initial yet promising methods for vehicle 
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trajectory compression based on its Vehicle Flow State, which could motivate more research 

efforts in this area. Future research should further refine/expand SAS and SAOTS to improve its 

performances especially PDR, latency, and speed accuracy, which are crucial for online 

applications. More testing/comparison of the proposed algorithms should also be conducted in 

future research using more real-world vehicle trajectory data. In addition, the collected data may 

contain errors (e.g., GPS data have a few meters of location error in normal situations), which may 

influence the vehicle flow state estimation. This issue should be investigated in future research. 

The methods proposed in this study does not use elevation data from GPS sensors. Elevation data 

can provide means to better understand the vehicular motion and incorporating this information 

can increase the performance and accuracy of the model.  After the algorithms are properly refined 

and tested, it may be integrated into real-world data collection applications to make a real impact. 

Furthermore, this research only applied queue length estimation as the target transportation 

applications to test and compare different trajectory compression algorithms. Although queue 

length estimation is an important urban traffic application, in the future, more relevant 

traffic/transportation applications should be used to test the proposed algorithms to obtain a more 

balanced view/testing of the algorithm. 

There are recent conversations on “data tax” that charges companies for using people’s data. 

For example, recently the French government has released a draft bill on the French Digital Service 

Tax. According to this bill, a 3% tax will apply to the revenue generated from online intermediation 

services and the sale of targeted digital advertising in France.  In other words, the tax is designed 

for big tech companies like Facebook, Google, and Amazon who rely on user data for business. 

According to a study by Deloitte, only 5% of the digital tax’s burden will fall on the large internet 

companies it aims to target. Instead, the study said consumers will absorb 55% of the cost and 40% 
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will be borne by businesses that use digital platforms (Pellefigue, 2019). If this applies to 

crowdsource mobile data collection (e.g., the way Google collects and uses data), it is expected 

that data collection should be done more intelligently on the client (or end-user) side who 

contributes the data. Companies will be more motivated to implement certain type of data 

compression methods to reduce the size of the data they receive from each client. The proposed 

vehicle trajectory compression concepts and methods in this dissertation research are expected to 

provide useful insight if this happens in the future. 
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